HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	1 of 44

Specification For HINK 2.66"EPD

Model NO.: HINK-E0266A85

Product VER:A0

Customer Approval

Customer	
Approval By	
Date Of Approval	

It will be agreed by the receiver, if not sign back the Specification within 15days.

Prepared By	Checked By	Approval By
Daisy Zhu	Yufeng Zhou	Ziping Hu

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	2 of 44

Version	Content	Date	Producer
A0	New release	2021/12/15	Daisy Zhu

力泰 江西兴泰科技有限公司 TECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	3 of 44

CONTENTS

1 General Description	4
2 Features	4
3 Application	4
4 Mechanical Specification	4
5 Mechanical Drawing of EPD Module	5
6 Input/Output Terminals	6
7 COMMAND DESCRIPTION	7
8 HOST INTERFACES	24
9 Power ON/OFF Sequence.	26
10 Reference Circuit	27
11ABSOLUTE MAXIMUM RATINGS	29
12 DC CHARACTERISTICS.	29
13 AC CHARACTERISTICS.	30
14Power Consumption	32
15 Typical Operating Sequence	32
16 Optical Characteristics.	33
16.1 Specifications	33
16.2 Definition of contrast ratio	33
16.3 Reflection ratio	34
17 Handing Safety And Environment Requirements	35
18 Reliability Test.	37
19 Block Diagram.	38
20 PartA/PartB specification	38
21 Point and line standard	39
22 Barcode	41
23 Packing	42

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	4 of 44

1. General Description

HINK-E0266A85 is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.66" active area contains 152×296 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

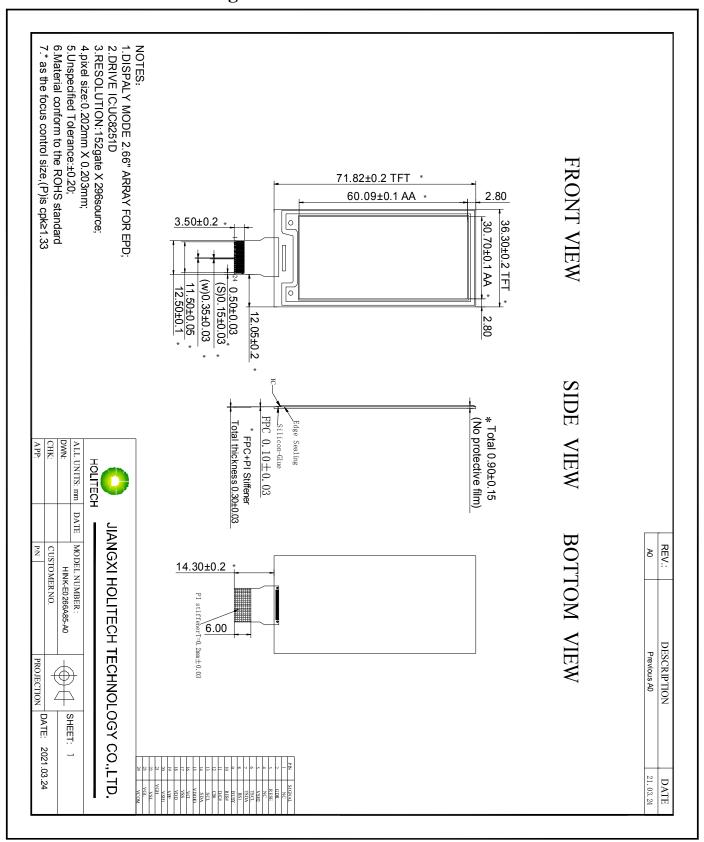
2.Features

- 152×296 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor I2C / built-in temperature sensor

3. Application

Electronic Shelf Label System

4. Mechanical Specifications


Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	152(H)×296(V)	Pixel	Dpi:125
Active Area	30.70(H)×60.09(V)	mm	
Pixel Pitch	0.202×0.203	mm	
Pixel Configuration	Rectangle		
Outline Dimension	36.3(H)×71.82(V) ×0.9(D)	mm	Without masking film
Weight	5±0.5	g	

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	5 of 44

5. Mechanical Drawing of EPD module

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	6 of 44

6. Input/Output Terminals

Pin#	n# Single Description		Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VDHR	Positive Source driving voltage	
<u>6</u> 7	TSCL TSDA	I2C Interface to digital temperature sensor Clock pin I2C Interface to digital temperature sensor Date pin	
8	BS	Bus selection pin	Note 6-5
9	BUSY N	Busy state output pin	Note 6-4
10	RST N	Reset	Note 6-3
11	DC	Data /Command control pin	Note 6-2
12	CSB	Chip Select input pin	Note 6-1
13	SCL	Serial communication clock input.	
14	SDA	Serial communication data input/output	
15	VDDIO	IO power	
16	VDD	Digital power	
17	GND	Ground	
18	VDDD	Digital power output (1.8V)	
19	VPP	OTP program power (7.75V)	
20	VDH	Positive source driver Voltage	
21	VGH	Positive Gate driving voltage	
22	VDL	Negative Source driving voltage	
23	VGL	Negative Gate voltage.	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CSB) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CSB is pulled LOW.

Note 6-2: This pin (DC) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as

Note 6-3: This pin (RST N) is reset signal input. When RST N become low, driver will reset. All register

default value. Driver all function will disable. Note 6-4: This pin (BUSY_N) is Busy state output pin.

L: Driver is Busy.

H: Host side can send command/data to driver.

Note 6-5: This pin (BS) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	7 of 44

7.COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle

C/D: 0: Command / 1: Data

D7-D0: -: Don't Care

maximum resolution

1)Panel	Setting	(PSR)	(R00H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Setting the panel	0	0	0	0	0	0	0	0	0	0	00н
	0	1	RES1	RES0	REG	KW/R	UD	SHL	SHD_N	RST_N	0Fн
	0	1	0	0	0	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	0DH


RES[1:0]: Display Resolution setting (source x gate)

00b: 96x230 (Default) Active source channels: S8 ~ S103. Active gate channels: G0 ~ G229.

01b: 96x252 Active source channels: $S8 \sim S103$. Active gate channels: $G0 \sim G251$.

10b: 128x296 Active source channels: S8 ~ S135. Active gate channels: G0 ~ G295.

11b: 160x296 Active source channels: S8 ~ S167. Active gate channels: G0 ~ G295.

- (1) Minimum active GD is always G0 regardless of <UD>(R00H).
- (2) Minimum active SD is always S0 regardless of <SHL>(R00H).

REG: LUT selection

active resolution 0: LUT from OTP. (Default)

1: LUT from register.

KW/R: Black / White / Red

0: Pixel with Black/White/Red. (Default)

1: Pixel with Black/White. KW mode

UD: Gate Scan Direction

0: Scan down. First line to Last line: Gn-1 \rightarrow Gn-2 \rightarrow Gn-3 \rightarrow ... \rightarrow G0

1: Scan up. (Default) First line to Last line: $G0 \rightarrow G1 \rightarrow G2 \rightarrow \dots \rightarrow Gn-1$

SHL: Source Shift Direction

0: Shift left. First data to Last data: $Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow ... \rightarrow S0$

1: Shift right. (Default) First data to Last data: $S0 \rightarrow S1 \rightarrow S2 \rightarrow ... \rightarrow Sn-1$

SHD N: **Booster Switch**

0: Booster OFF

1: Booster ON (Default)

When SHD N becomes LOW, charge pump will be turned OFF, register and SRAM data will be kept until VDD OFF, And Source/Gate/Border/ VCOM will be released to floating.

RST N: Soft Reset

> 0: Reset. Booster OFF, Register data are set to their default values, all drivers will be reset, and all functions will be disabled. Source/Gate/Border/VCOM will be released to floating. After soft reset is transmitted, the internal operation needs at least 50uS to execute. During this period of time, the BUSY N pin keeps low and any command will be ignored.

1: No effect (Default).

VCMZ: VCOM function

0: No effect (Default).

1: VCOM is always floating

TS AUTO: Temperature sensor will be activated automatically one time.

0: No effect

1: Before enabling booster, Temperature Sensor will be activated automatically one time. (Default)

TIEG: VGL state function

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	8 of 44

0: No effect

1 : After power off booster, VGL will be tied to GND. (Default)

NORG: VCOM state during refreshing display

0: No effect (Default)

1: Expect refreshing display, VCOM is tied to GND.

VC_LUTZ: VCOM state during refreshing display

0: No effect

1: After refreshing display, the output of VCOM is set to floating automatically. (Default)

Note: Priority of Vcom setting: VCMZ > EOPT > NORG > VC_LUTZ

2)Power Setting (PWR) (R01H)

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0	
Selecting Internal/External	0	0	0	0	0	0	0	0	0	1	01н
	0	1	•	•	•		-	-	VS_EN	VG_EN	03н
	0	1	•	•	•		- VGHL_LV[3:0]				
Power	0	1	•	•	VSH[5:0]						3Fн
	0	1	•	•			VSL	[5:0]			3Гн
	0	1	-	•	VDHR[5:0]						0Дн

VS EN: Source power selection

0 : External source power from VSH/VSL/VDHR pins

1 : Internal DC/DC function for generating VSH/VSL/VDHR. (Default)

VDG EN: Gate power selection

0 : External gate power from VGH/VGL pins

1 : Internal DC/DC function for generating VGH/VGL. (Default)

VGHL LV[3:0]: VGH / VGL Voltage Level selection.

VGHL_LV	VGHL Voltage Level
0000 (Default)	VGH=20V, VGL= -20V
0001	VGH=19V, VGL= -19V
0010	VGH=18V, VGL= -18V
0011	VGH=17V, VGL= -17V
0100	VGH=16V, VGL= -16V
0101	VGH=15V, VGL= -15V
0110	VGH=14V, VGL= -14V
0111	VGH=13V, VGL= -13V
1000	VGH=12V, VGL= -12V
1001	VGH=11V, VGL= -11V
1010	VGH=10V, VGL= -10V

VSH[5:0]: Internal VSH power selection for B/W pixel.(Default value: 11 1111b)

VSH	Voltage	VSH	Voltage	VSH	Voltage	VSH	Voltage
00 0000	2.4 V	01 0000	5.6 V	10 0000	8.8 V	11 0000	12.0 V
00 0001	2.6 V	01 0001	5.8 V	10 0001	9.0 V	11 0001	12.2 V
00 0010	2.8 V	01 0010	6.0 V	10 0010	9.2 V	11 0010	12.4 V
00 0011	3.0 V	01 0011	6.2 V	10 0011	9.4 V	11 0011	12.6 V
00 0100	3.2 V	01 0100	6.4 V	10 0100	9.6 V	11 0100	12.8 V
00 0101	3.4 V	01 0101	6.6 V	10 0101	9.8 V	11 0101	13.0 V
00 0110	3.6 V	01 0110	6.8 V	10 0110	10.0V	11 0110	13.2 V
00 0111	3.8 V	01 0111	7.0 V	10 0111	10.2 V	11 0111	13.4 V
00 1000	4.0 V	01 1000	7.2 V	10 1000	10.4 V	11 1000	13.6 V
00 1001	4.2 V	01 1001	7.4 V	10 1001	10.6 V	11 1001	13.8 V
00 1010	4.4 V	01 1010	7.6 V	10 1010	10.8 V	11 1010	14.0 V
00 1011	4.6 V	01 1011	7.8 V	10 1011	11.0 V	11 1011	14.2 V
00 1100	4.8 V	01 1100	8.0 V	10 1100	11.2 V	11 1100	14.4 V
00 1101	5.0 V	01 1101	8.2V	10 1101	11.4 V	11 1101	14.6 V
00 1110	5.2 V	01 1110	8.4 V	10 1110	11.6 V	11 1110	14.8 V
00 1111	5.4 V	01 1111	8.6 V	10 1111	11.8 V	11 1111	15.0 V

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	9 of 44

VSL[5:0]: Internal VSL power selection for B/W pixel. (Default value: 11 1111b)

VSL	Voltage	VSL	Voltage	VSL	Voltage	VSL	Voltage
00 0000	-2.4 V	01 0000	-5.6 V	10 0000	-8.8 V	11 0000	-12.0 V
00 0001	-2.6 V	01 0001	-5.8 V	10 0001	-9.0 V	11 0001	-12.2 V
00 0010	-2.8 V	01 0010	-6.0 V	10 0010	-9.2 V	11 0010	-12.4 V
00 0011	-3.0 V	01 0011	-6.2 V	10 0011	-9.4 V	11 0011	-12.6 V
00 0100	-3.2 V	01 0100	-6.4 V	10 0100	-9.6 V	11 0100	-12.8 V
00 0101	-3.4 V	01 0101	-6.6 V	10 0101	-9.8 V	11 0101	-13.0 V
00 0110	-3.6 V	01 0110	-6.8 V	10 0110	-10.0V	11 0110	-13.2 V
00 0111	-3.8 V	01 0111	-7.0 V	10 0111	-10.2 V	11 0111	-13.4 V
00 1000	-4.0 V	01 1000	-7.2 V	10 1000	-10.4 V	11 1000	-13.6 V
00 1001	-4.2 V	01 1001	-7.4 V	10 1001	-10.6 V	11 1001	-13.8 V
00 1010	-4.4 V	01 1010	-7.6 V	10 1010	-10.8 V	11 1010	-14.0 V
00 1011	-4.6 V	01 1011	-7.8 V	10 1011	-11.0 V	11 1011	-14.2 V
00 1100	-4.8 V	01 1100	-8.0 V	10 1100	-11.2 V	11 1100	-14.4 V
00 1101	-5.0 V	01 1101	-8.2V	10 1101	-11.4 V	11 1101	-14.6 V
00 1110	-5.2 V	01 1110	-8.4 V	10 1110	-11.6 V	11 1110	-14.8 V
00 1111	-5.4 V	01 1111	-8.6 V	10 1111	-11.8 V	11 1111	-15.0 V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (Default value: 00 1101b)

VDHR	Voltage	VDHR	Voltage	VDHR	Voltage	VDHR	Voltage
00 0000	2.4 V	01 0000	5.6 V	10 0000	8.8 V	11 0000	12.0 V
00 0001	2.6 V	01 0001	5.8 V	10 0001	9.0 V	11 0001	12.2 V
00 0010	2.8 V	01 0010	6.0 V	10 0010	9.2 V	11 0010	12.4 V
00 0011	3.0 V	01 0011	6.2 V	10 0011	9.4 V	11 0011	12.6 V
00 0100	3.2 V	01 0100	6.4 V	10 0100	9.6 V	11 0100	12.8 V
00 0101	3.4 V	01 0101	6.6 V	10 0101	9.8 V	11 0101	13.0 V
00 0110	3.6 V	01 0110	6.8 V	10 0110	10.0V	11 0110	13.2 V
00 0111	3.8 V	01 0111	7.0 V	10 0111	10.2 V	11 0111	13.4 V
00 1000	4.0 V	01 1000	7.2 V	10 1000	10.4 V	11 1000	13.6 V
00 1001	4.2 V	01 1001	7.4 V	10 1001	10.6 V	11 1001	13.8 V
00 1010	4.4 V	01 1010	7.6 V	10 1010	10.8 V	11 1010	14.0 V
00 1011	4.6 V	01 1011	7.8 V	10 1011	11.0 V	11 1011	14.2 V
00 1100	4.8 V	01 1100	8.0 V	10 1100	11.2 V	11 1100	14.4 V
00 1101	5.0 V	01 1101	8.2V	10 1101	11.4 V	11 1101	14.6 V
00 1110	5.2 V	01 1110	8.4 V	10 1110	11.6 V	11 1110	14.8 V
00 1111	5.4 V	01 1111	8.6 V	10 1111	11.8 V	11 1111	15.0 V

3)Power OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning OFF the power	0	0	0	0	0	0	0	0	1	0	02H

After the Power OFF command, the driver will be powered OFF. The sequence refers to POWER MANAGEMENT section. This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode.Source/Gate/Border/VCOM will be released to floating.

4)Power OFF Sequence Setting(PFS) (R03H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Setting Power OFF sequence	0	0	0	0	0	0	0	0	1	1	03н
	0	1	-	-	T_VDS_	OFF[1:0]	-	-	-	-	00н

T VDS OFF[1:0]: Power OFF Sequence of VDH and VDL.

00b: 1 frame (Default) 01b: 2 frames 10b: 3 frames 11b: 4 frame

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	10 of 44

5) Power ON (PON) (R04H)

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0	
Turning ON the power	0	0	0	0	0	0	0	1	0	0	04H

After the Power ON command, the driver will be powered ON The sequence refers to POWER MANAGEMENT section. This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY N signal will return to high.

6) Power ON MEASURE(PMES) (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	0	1	05н

This command enables the internal bandgap, which will be cleared by the next POF.

7) Booster Soft Start (BTST) (R06H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	1	0	06н
Starting data transmission	0	1	BT_PHA7	BT_PHA6	BT_PHA5	BT_PHA4	BT_PHA3	BT_PHA2	BT_PHA1	BT_PHA0	17H
Starting data transmission	0	1	BT_PHB7	BT_PHB6	BT_PHB5	BT_PHB4	BT_PHB3	BT_PHB2	BT_PHB1	BT_PHB0	17H
	0	1	-	-	BT_PHC5	BT_PHC4	BT_PHC3	BT_PHC2	BT_PHC1	BT_PHC0	17H

BTPHA[7:6]: Soft start period of phase A.

BTPHA[5:3]: Driving strength of phase A

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

BTPHB[7:6]: Soft start period of phase B.

BTPHB[5:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

BTPHC[5:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

8) Deep sleep (DSLP) (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Deep Sleep	0	0	0	0	0	0	0	1	1	1	07н
Беер Зіеер	0	1	1	0	1	0	0	1	0	1	А5н

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	11 of 44

9) Data Start Transmission 1 (DTM1) (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	10H
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	00н
Starting data transmission	0	1	:	:		:	:	:	:	:	00н
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	00н

This command starts transmitting data and write them into SRAM.

In K/W mode, this command writes "OLD" data to SRAM.

In K/W/Red mode, this command writes "B/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

10) Data stop (DSP) (R11H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Stopping data transmission	0	0	0	0	0	1	0	0	0	1	11H
Stopping data transmission	1	1	data_flag	•	•	•	•	•	•	•	00н

Check the completeness of data. If data is complete, start to refresh display.

Data_flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY N signal will become "0".

11) Display Refresh (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Refreshing the display	0	0	0	0	0	1	0	0	1	0

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT. After Display Refresh command, BUSY N signal will become "0" and the refreshing of panel starts.

The waiting interval form BUSY_N falling to the first FLG command must be > 200uS.

12) DATA START TRANSMISSION 2 (DTM2) (R13H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	1	1	13 _H
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	00н
Starting data transmission	0	1		:			:	:	:	:	00н
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	00н

This command starts transmitting data and write them into SRAM.

In K/W mode, this command writes "NEW" data to SRAM.

In K/W/Red mode, this command writes "RED" data to SRAM.

13) AUTO SEQUENCE (AUTO) (R17H)

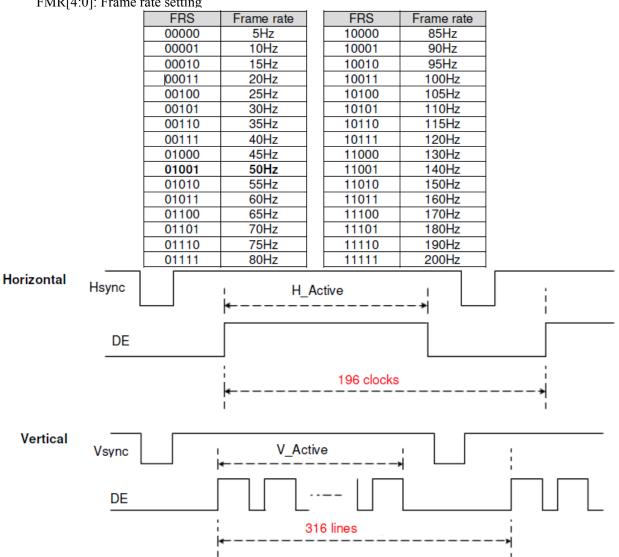
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Auto Soguence	0	0	0	0	0	1	0	1	1	1	17H
Auto Sequence	0	1	1	0	1	0	0	1	0	1	А5н

The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP.

AUTO $(0x17) + Code(0xA5) = (PON \rightarrow DRF \rightarrow POF)$

AUTO $(0x17) + Code(0xA7) = (PON \rightarrow DRF \rightarrow POF \rightarrow DSLP)$

HOLITECH


JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	12 of 44

14) PLL Control (PLL) (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Controlling DLL	0	0	0	0	1	1	0	0	0	0	30H
Controlling PLL	0	1		•	•			FRS[4:0]			09н

The command controls the PLL clock frequency. The PLL structure must support the following frame rates: FMR[4:0]: Frame rate setting

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	13 of 44

15) Temperature Sensor Calibration(TSC) (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	0	0	40H
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6 / TS3	D5 / TS2	D4 / TS1	D3 / TS0	00н
	1	1	D2	D1	D0		-				00н

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

	n TSE (R41h) is set
TS[7:0]/D[10:3]	Temperature (°C)
1110_0111	-25
1110_1000	-24
1110_1001	-23
1110_1010	-22
1110_1011	-21
1110_1100	-20
1110_1101	-19
1110_1110	-18
1110_1111	-17
1111_0000	-16
1111_0001	-15
1111_0010	-14
1111_0011	-13
1111_0100	-12
1111_0101	-11
1111_0110	-10
1111_0111	-9
1111_1000	-8
1111_1001	-7
1111_1010	-6
1111_1011	-5
1111_1100	-4
1111_1101	-3
1111_1110	-2
1111 1111	-1

eads external LM/
Temperature(°C)
0
1
2
2 3 4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

TS[7:0]/D[10:3]	Temperature(°C)
0001_1001	25
0001_1010	26
0001_1011	27
0001_1100	28
0001_1101	29
0001_1110	30
0001_1111	31
0010_0000	32
0010_0001	33
0010_0010	34
0010_0011	35
0010_0100	36
0010_0101	37
0010_0110	38
0010_0111	39
0010_1000	40
0010_1001	41
0010_1010	42
0010_1011	43
0010_1100	44
0010_1101	45
0010_1110	46
0010_1111	47
0011_0000	48
0011_0001	49

16) Temperature Sensor Enable(TSE) (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enable Temperature Sensor	0	0	0	1	0	0	0	0	0	1	41H
/Offset	0	1	TSE	•	•	•		TO	[3:0]		00н

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (default) 1: Disable; using external sensor.

TO[3:0]: Temperature offset.

TO[3:0]	Calculation
0000 b	+0 (Default)
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

TO[3:0]	Calculation
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	14 of 44

17) Temperature Sensor Write (TSW) (R42H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0					
	0	0	0	1	0	0	0	0	1	0	42H				
Write External Temperature	0	1 WATTR[7:0]													
Sensor	0	1	1 WMSB[7:0]						1 WMSB[7:0]						00н
	0	1				WLS	B[7:0]				00н				

This command reads the temperature sensed by the temperature sensor.

WATTR: D[7:6]: I2C Write Byte Number

00b: 1 byte (head byte only)

01b : 2 bytes (head byte + pointer)

10b : 3 bytes (head byte + pointer + 1st parameter)

11b: 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

D[5:3]: User-defined address bits (A2, A1, A0)

D[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor

WLSB[7:0]: LSByte of write-data to external temperature sensor

18) TEMPERATURE SENSOR READ (TSR) (R43H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Dood Fisternal Terror continue	0	0	0	1	0	0	0	0	1	1	43H
Read External Temperature Sensor	1	1				RMS	B[7:0]				00н
Gerisoi	1	1				RLS	3[7:0]				00н

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

19) VCOM and Data Interval Setting(CDI) (R50H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Interval between	0	0	0	1	0	1	0	0	0	0	50h
VCOM and Data	0	1	VBD	[1:0]	DDX	([1:0]		CDI	[3:0]		31h

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border data selection

Under K/W/Red mode (KW/R=0):

DDX[0]	VBD[1:0]	LUT
	00	Floating
0	01	LUTR
0	10	LUTW
	11	LUTK
	00	LUTK
1	01	LUTW
(Default)	10	LUTR
	11	Floating

Under K/W mode (KW/R=1):

DDX[0]	VBD[1:0]	LUT
	00	Floating
0	01	LUTKW (1 → 0)
U	10	LUTWK (0 → 1)
	11	Floating
	00	Floating
1	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	Floating

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	15 of 44

DDX[1:0]: Data polality.

Under K/W/Red mode (KW/R=0):

DDX[1] is for RED data. DDX[0] is for BW data

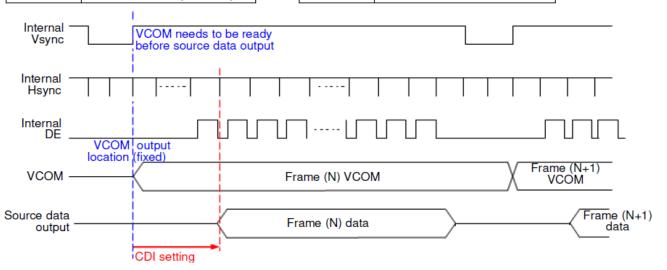
DDX[1:0]	Data {Red, K/W}	LUT
	00	LUTW
00	01	LUTK
00	10	LUTR
	11	LUTR
	00	LUTK
01	01	LUTW
(Default)	10	LUTR
	11	LUTR

DDX[1:0]	Data {Red, K/W}	LUT
	00	LUTR
10	01	LUTR
10	10	LUTW
	11	LUTK
	00	LUTR
11	01	LUTR
''	10	LUTK
	11	LUTW

Under K/W mode (KW/R=1):

DDX[1]=0 is for KW mode with NEW/OLD,

DDX[1]=1 is for KW mode without NEW/OLD.


DDX[1:0]	Data {NEW, OLD}	LUT
	00	LUTWW (0 → 0)
00	01	LUTKW (1 → 0)
00	10	LUTWK (0 → 1)
	11	LUTKK (1 → 1)
	00	LUTKK (0 → 0)
01	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	LUTWW (1 → 1)

DDX[1:0]	Data (NEW)	LUT
10	0	LUTKW (1 → 0)
10	1	LUTWK (0 → 1)
11	0	LUTWK (1 → 0)
	1	LUTKW (0 → 1)

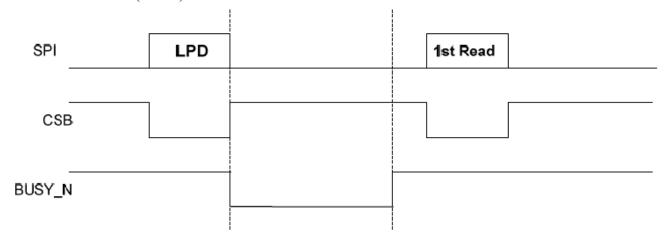
CDI[3:0]: Vcom and data interval

CDI[3:0]	VCOM and Data Interval
0000 b	17 hsync
0001	16
0010	15
0011	14
0100	13
0101	12
0110	11
0111	10 (Default)

CDI[3:0]	VCOM and Data Interval
1000	9
1001	8
1010	7
1011	6
1100	5
1101	4
1110	3
1111	2

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	16 of 44


20) Low Power Detection(LPD) (R51h)

	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Detect Lew Dewer	0	0	0	1	0	1	0	0	0	1	51	
	Detect Low Power	1	1	•				-	-	•	LPD	011

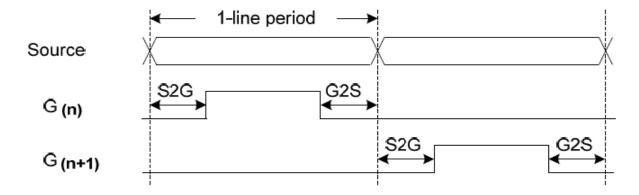
This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal Low Power Detection Flag

- 0: Low power input (VDD<2.5V, selected by LVD_SEL[1:0] in command LVSEL)
- 1: Normal status (default)

21) TCON Setting(TCON) (R60h)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	60h
Period	0	1		S2G	[3:0]			G2S	[3:0]		22h


This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period
0000b	4
0001	8
0010	12 (Default)
0011	16
0100	20
0101	24
0110	28
0111	32

S2G[3:0] or G2S[3:0]	Period
1000b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Period = 660 nS.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	17 of 44

22) Resolution Setting(TRES) (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	0	0	0	0	1	61h
Set Display Resolution	0	1			HRES[7:3]			0	0	0	00h
Set Display Resolution	0	1	•	•	•	-	-	•		VRES[8]	00h
	0	1	VRES[7:0]								00h

This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).

HRES[7:3]: Horizontal Display Resolution VRES[8:0]: Vertical Display Resolution

Active channel calculation, assuming HST[7:3]=0, VST[8:0]=0:

Gate: First active gate = G0; Last active gate = VRES[8:0] – 1

Source: First active source = X (If HRES[7:0]>160, X=0; otherwise, X=8) Last active source = HRES[7:0] - 1 + X (If HRES[7:0]>160, X=0; otherwise, X=8)

Example: For 128 (source) x 272 (gate), assuming HST[7:3]=0, VST[8:0]=0

Gate: First active gate = G0,

Last active gate = G271 (VRES[8:0] = 272; 272 - 1= 271) Source: First active source = S8, (HRES[7:0] \leq 160 therefore X=8)

Last active source = S135; (128 - 1 + 8 = 135)

23) GATE/SOURCE START SETTING (GSST) (R65H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	0	0	1	0	1	65h
Sat Cata/Sauraa Start	0	1			HST[7:3]			0	0	0	00h
Set Gate/Source Start	0	1	•	•	-	•	•	•	•	VST[8]	00h
	0	1				VST	[7:0]				00h

This command defines resolution start gate/source position.

HST[7:3]: Horizontal Display Start Position (Source)

VST[8:0]: Vertical Display Start Position (Gate)

Example: For 128(Source) x 240(Gate)

HST[7:0] = 32VST[8:0] = 32

Gate: First active gate = G32 (VST[8:0] = 32),

Last active gate = G271 (240-1+32=271)

Source: First active source = S40 (HST[7:0] = 32, X=8, 32+8 = 40), (Note)

Last active source = S167 (128-1+32+8=167)

Note: If HRES[7:0] > 160, X=8; otherwise X=8.

24) Revision(REV) (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
	0	0	0	1	1	1	0	0	0	0	70h		
1 1 Reserved									00h				
Chip Revision	1		CHIP_REV[7:0]										
Chip Revision	1	1 LUT_REV[7:0]									FFh		
	1 1 LUT_REV[15:8]										FFh		
	1	1		LUT_REV[23:16] FF									

The LUT REV is read from OTP address = $0x0017 \sim 0X0019 / 0x1017 \sim 0X1019$.

CHIP_REV[7:0]: Chip Revision, it is fixed by "0x0Ah".

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	18 of 44

25) Get status(FLG) (R71H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	1	0	0	0	1	71h
Read Flags	1	1	-	PTL_ flag	I ² C_ERR	I ² C_ BUSYN	data_ flag	PON	POF	BUSY_N	13h

This command reads the IC status.

PTL FLAG Partial display status (high: partial mode)

 I^2C ERR: I^2C master error status

I²C BUSYN: I²C master busy status (low active)

data flag: Driver has already received all the one frame data

PON: Power ON status
POF: Power OFF status

BUSY_N: Driver busy status (low active)

26) Auto measure vcom(AMV) (R80h)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	0	80h
Automatically measure VCOM	0	1	•	•	AMV [*]	T[1:0]	XON	AMVS	AMV	AMVE	10h

This command reads the IC status.

AMVT[1:0]: Auto Measure VCOM Time

00b: 3s 01b: 5s (default)

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default)

1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get VCOM value with the VV command (R81h) (default)

1: Get VCOM value in analog signal. (External analog to digital converter)

AMVE: Auto Measure VCOM Enable (/Disable)

0: No effect

1: Trigger auto VCOM sensing.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	19 of 44

27) VCOM Value(VV) (R81h)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0		81h
Automatically measure VCOM	1	1	•				VV[6:0]				00h

This command gets the VCOM value.

VV[6:0]: VCOM Value Output

VV [6:0]	VCOM Voltage (V)	VV [6:0]	VCOM Voltage (V)	VV [6:0]	VCOM Voltage (V)
0000000b	-0.1	0101011b	-4.4	1010110b	-8.7
0000001b	-0.2	0101100b	-4.5	1010111b	-8.8
0000010b	-0.3	0101101b	-4.6	1011000b	-8.9
0000011b	-0.4	0101110b	-4.7	1011001b	-9
0000100b	-0.5	0101111b	-4.8	1011010b	-9.1
0000101b	-0.6	0110000b	-4.9	1011011b	-9.2
0000110b	-0.7	0110001b	-5	1011100b	-9.3
0000111b	-0.8	0110010b	-5.1	1011101b	-9.4
0001000b	-0.9	0110011b	-5.2	10111110b	-9.5
0001001b	-1	0110100b	-5.3	1011111b	-9.6
0001010b	-1.1	0110101b	-5.4	1100000b	-9.7
0001011b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001101b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	0111010b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	0111110b	-6.3	1101001b	-10.6
0010100b	-2.1	0111111b	-6.4	1101010b	-10.7
0010101b	-2.2	1000000b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	1000101b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
0100000b	-3.3	1001011b	-7.6	1110110b	-11.9
0100001b	-3.4	1001100b	-7.7	1110111b	-12
0100010b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
0100100b	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
0100110b	-3.9	1010001b	-8.2	11111100b	-12.5
0100111b	-4	1010010b	-8.3	11111101b	-12.6
0101000b	-4.1	1010011b	-8.4	11111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	20 of 44

28) VCOM-DC Setting(VDCS) (R82H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set VCOM DC	0	0	1	0	0	0	0	0	1	0	82h
Set VCOM_DC	0	1	•	VDCS[6:0]							00h

This command sets VCOM_DC value **VDCS[6:0]: VCOM_DC Setting**

VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)
0000000b	-0.1	0101011b	-4.4	1010110b	-8.7
0000001b	-0.2	0101100b	-4.5	1010111b	-8.8
0000010b	-0.3	0101101b	-4.6	1011000b	-8.9
0000011b	-0.4	0101110b	-4.7	1011001b	-9
0000100b	-0.5	0101111b	-4.8	1011010b	-9.1
0000101b	-0.6	0110000b	-4.9	1011011b	-9.2
0000110b	-0.7	0110001b	-5	1011100b	-9.3
0000111b	-0.8	0110010b	-5.1	1011101b	-9.4
0001000b	-0.9	0110011b	-5.2	1011110b	-9.5
0001001b	-1	0110100b	-5.3	1011111b	-9.6
0001010b	-1.1	0110101b	-5.4	1100000b	-9.7
0001011b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001101b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	0111010b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	0111110b	-6.3	1101001b	-10.6
0010100b	-2.1	0111111b	-6.4	1101010b	-10.7
0010101b	-2.2	1000000b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	1000101b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
0100000b	-3.3	1001011b	-7.6	1110110b	-11.9
0100001b	-3.4	1001100b	-7.7	1110111b	-12
0100010b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
0100100b	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
0100110b	-3.9	1010001b	-8.2	1111100b	-12.5
0100111b	-4	1010010b	-8.3	1111101b	-12.6
0101000b	-4.1	1010011b	-8.4	1111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	21 of 44

29) PARTIAL WINDOW (PTL) (R90H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	1	0	0	0	0	0	1	0	90h	
0 1 HRST[7:3]							0	0	0	00h	
	0	1			HRED[7:3]			1	1	1	07h
Set Partial Window	0	1	٠	•		•	•	٠	•	VRST[8]	00h
Set Fartial Willdow	0	1				VRS	T[7:0]				00h
	0	1	•		-	•		•		VRED[8]	00h
	0	1				VRE	D[7:0]				00h
	0	1						٠	-	PT SCAN	01h

This command sets partial window.

HRST[7:3]: Horizontal start channel bank. (value 00h~13h)

HRED[7:3]: Horizontal end channel bank. (value 00h~13h). HRED must be greater than HRST.

VRST[8:0]: Vertical start line. (value 000h~127h)

VRED[8:0]: Vertical end line. (value 000h~127h). VRED must be greater than VRST.

PT SCAN: 0: Gates scan only inside of the partial window.

1: Gates scan both inside and outside of the partial window. (default)

30) PARTIAL IN (PTIN) (R91H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial In	0	0	1	0	0	1	0	0	0	1	91h

This command makes the display enter partial mode.

31) PARTIAL OUT (PTOUT) (R92H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial Out	0	0	1	0	0	1	0	0	1	0	92h

This command makes the display exit partial mode and enter normal mode.

32) PROGRAM MODE (PGM) (RA0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enter Program Mode	0	0	1	0	1	0	0	0	0	0	A0h

After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

33) ACTIVE PROGRAM (APG) (RA1H)

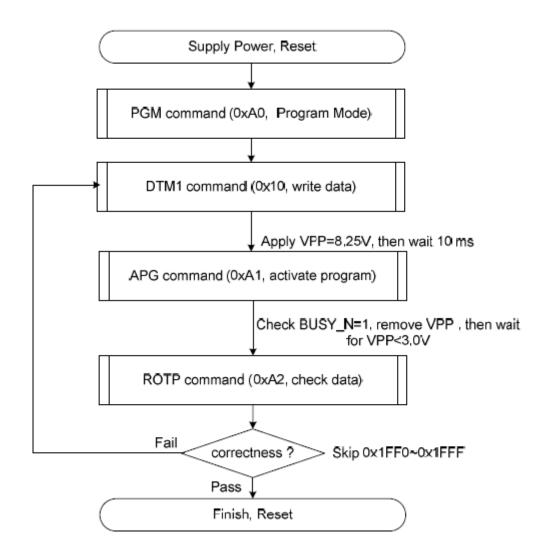
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Active Program OTP	0	0	1	0	1	0	0	0	0	1	A1l

After this command is transmitted, the programming state machine would be activated.

The BUSY flag would fall to 0 until the programming is completed.

34) READ OTP DATA (ROTP) (RA2H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	0	0	1	0	1	0	0	0	1	0	A2h	
	1	1		Dummy								
	1	1	The data of address 0x000 in the OTP									
Read OTP data for check	1	1			The data	of addres	s 0x001 in	the OTP				
	1	1					:					
	1	1	The data of address (n-1) in the OTP									
	1	1 1 The data of address (n) in the OTP										


The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0x17FF.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	22 of 44

35) CASCADE SETTING (CCSET) (RE0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Cascade Option	0	0	1	1	1	0	0	0	0	0	E0h
Set Cascade Option	0	1	-	-	-	-	-	-	TSFIX	CCEN	00h

This command is used for cascade.

CCEN: Output clock enable/disable.

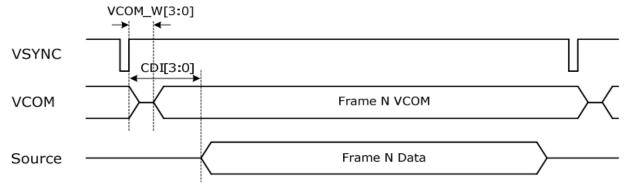
- 0: Output 0V at CL pin. (default)
- 1: Output clock at CL pin for slave chip.

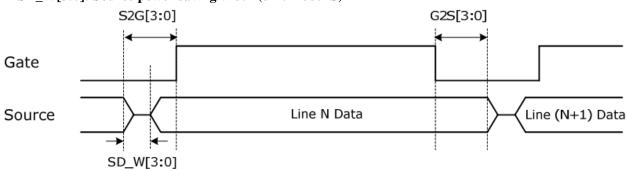
TSFIX: Let the value of slave's temperature is same as the master's.

- 0: Temperature value is defined by internal temperature sensor / external LM75. (default)
- 1: Temperature value is defined by TS SET[7:0] registers.

36) POWER SAVING (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Saving for VCOM &	0	0	1	1	1	0	0	0	1	1	E3h
Source	0	1		VCOM	_W[3:0]			SD_V	V[3:0]		00h


This command is set for saving power during fresh period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters.


JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	23 of 44

VCOM_W[3:0]: VCOM power saving width (unit = line period)

SD_W[3:0]: Source power saving width (unit = 660nS)

37) LVD VOLTAGE SELECT (LVSEL) (RE4H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Salast LVD Valtage	0	0	1	1	1	0	0	1	0	0	E4h
Select LVD Voltage	0	1	•	•	•	•	•	-	LVD_S	EL[1:0]	03h

LVD SEL[1:0]: Low Power Voltage selection

LVD_SEL[1:0]	LVD value
00	< 2.2 V
01	< 2.3 V
10	< 2.4 V
11	< 2.5 V (default)

38) FORCE TEMPERATURE (TSSET) (RE5H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Force Temperature Value for	0	0	1	1	1	0	0	1	0	1	E5h
Cascade	0	1				TS_SE	ET[7:0]				00h

This command is used for cascade to fix the temperature value of master and slave chip.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	24 of 44

8 . HOST INTERFACES

E0213A108 provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and ignores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

3 wire SPI format

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

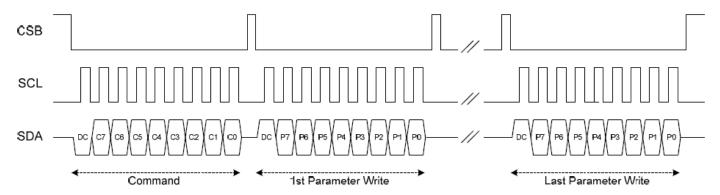


Figure: 3-wire SPI write operation

The MSB bit of data will be output at SDA pin after the 1st SCL falling edge, if the 1st input data at SDA is high. Only in the case of OTP data read, the 1st packet of output data are dummy data.

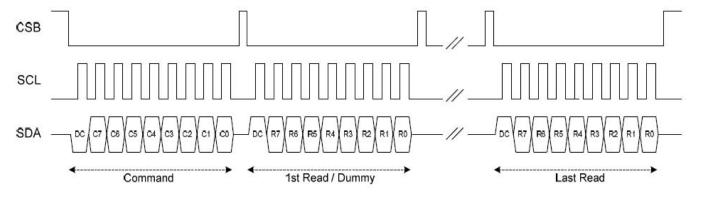


Figure: 3-wire SPI read operation

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	25 of 44

4 wire SPI format

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

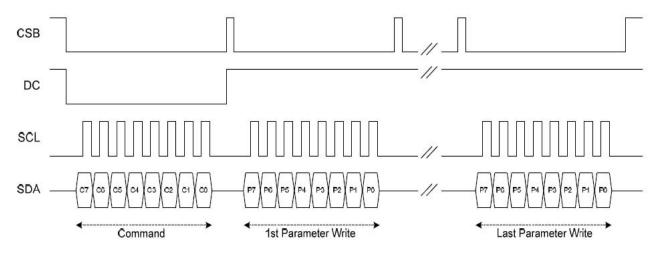


Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High. Only in the case of OTP data read, the 1st packet of output data are dummy data.

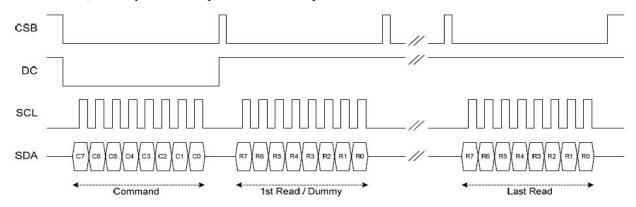
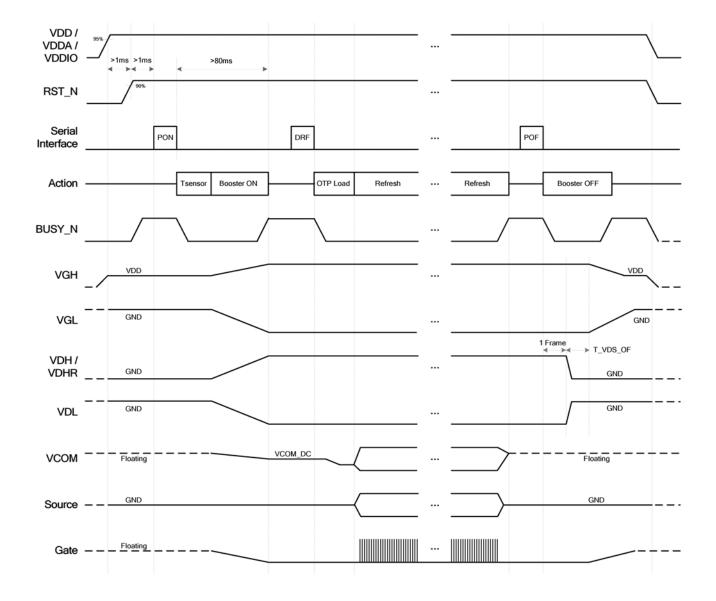


Figure: 4-wire SPI read operation



JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	26 of 44

9. Power ON/OFF Sequence

- 1. Temperature sensor will be activated automatically for one-time sensing before enabling booster.
- 2. After refreshing display, VCOM will be set to floating automatically.
- 3. In OTP mode (REG_EN=0), the LUT in OTP will be copied to register automatically after the DSP/DRF command.
- 4. After RST_N rising, the waiting time for internal initial processing, greater than 1mS, is necessary. Any commands transmitted to chip during this time will be ignored.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	27 of 44

10. Reference Circuit

CON1 24Pin

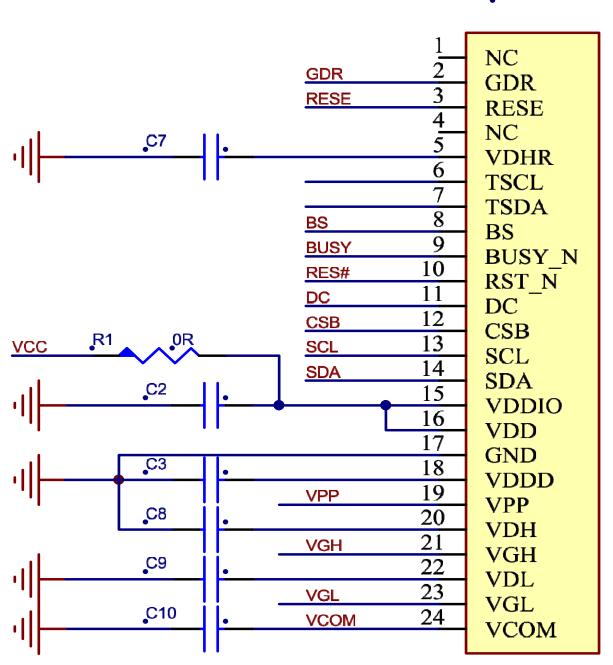


Figure 10-1

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	28 of 44

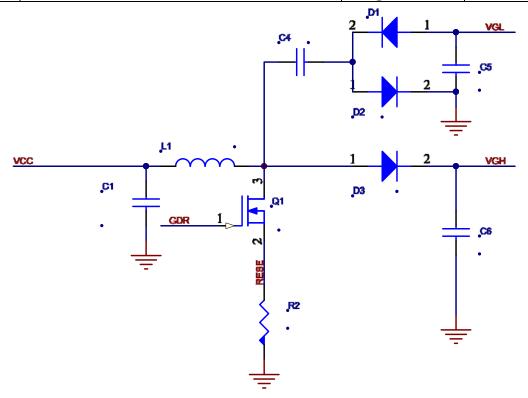


Figure 10-2

Part Name	Value /requirement/Reference Part
C1—C3	1uF/0603;X5R/;Voltage Rating: 25V
C4	4.7uF/0603;X5R;Voltage Rating: 25V
C5-C10	1uF/0603;X5R;Voltage Rating: 25V
D1—D3	MBR0530
	1) Reverse DC voltage≥30V
	2) Forward current≥500mA
	3)Forward voltage≤430mV
R2	0.47 Ω/0603: 1% variation
Q1	NMOS:Si1308EDL
	1) Drain-Source breakdown voltage ≥30V
	2) Vgs (th) =0.9 (Typ), 1.3V (Max)
	3) Rds on $\leq 2.1 \Omega$ @ Vgs=2.5V
L1	10uH/NRH3010T100MN
CON24Pin	0.5mm ZIF Socket 24Pins,0.5mm pitch

HOLITECH Confidential Page 28 of 42 2021/12/15

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	29 of 44

11. ABSOLUTE MAXIMUM RATINGS

Table 11-1: Maximum Ratings

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
$V_{ m DD}$	Logic supply voltage	-0.3 to +6.0	V	-	ı	
T_{OPR}	Operation temperature range	0 to 40	°C	45 to 70	%	Note 11-1
Tttg	Transportation temperature range	-25 to 60	°C	45 to 70	%	Note11-2
Tstg	Storage condition	0 to 40	°C	45 to 70	%	Maximum storage time: 5 years
-	After opening the package	0 to 40	°C	45 to 70	%	

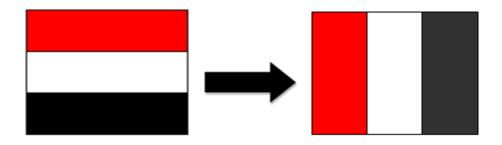
Note 11-1: We guarantee the single pixel display quality for $0-35^{\circ}$ C, but we only guarantee the barcode readable for $35-40^{\circ}$ C. Normal use is recommended to refresh every 24 hours.

Note11-2: Tttg is the transportation condition, the transport time is within 10 days for $-25^{\circ}\text{C} \sim 0^{\circ}\text{C}$ or $40^{\circ}\text{C} \sim 60^{\circ}\text{C}$.

Note 11-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months. We suggest that the full black and full white picture could be added to clear the screen after the module is refreshed for a long time, the display effect would be better.

12. DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VDD=3.3V, T_{OPR}=25°C.


Table 12-1: DC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VDD	VDD operation voltage	-	2.5	3.3	3.6	V
VIH	High level input voltage	Digital input pins	0.7xVDDIO	1	VDDIO	V
VIL	Low level input voltage	Digital input pins	0	1	0.3xVDD	V
VOH	High level output voltage	IOH = 400uA	VDDIO-0.4	-	-	V
VOL	Low level output voltage	IOL = -400uA	0	-	0.4	V
Iupdate	Module operating current	-	-	4	-	mA
Isleep	Deep sleep mode	VDD=3.3V	-	-	0.3	uA

- The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 12-1)
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by XingTai.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 12-1

The Typical power consumption

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	30 of 44

13. AC CHARACTERISTICS

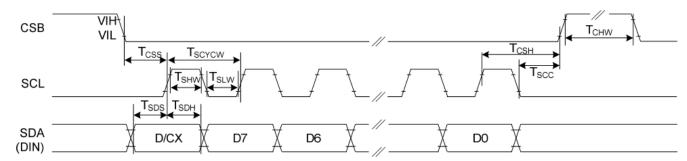


Figure: 3-wire Serial Interface Characteristics (Write mode)

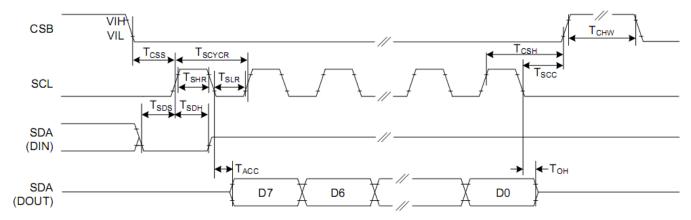


Figure: 3-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	MIN	TYP.	MAX.	Unit
•	Dignar / Farameter		17221 \	1111	1411111	
TCSS		Chip select setup time	60			ns
TCSH	CSB	Chip select hold time	65			ns
TSCC	COD	Chip select setup time	20			ns
TCHW		Chip select setup time	40			ns
TSCYCW		Serial clock cycle (Write)	100			ns
TSHW		SCL "H" pulse width (Write)	35			ns
TSLW	SCL	SCL "L" pulse width (Write)	35			ns
TSCYCR	SCL	Serial clock cycle (Read)	240			ns
TSHR		SCL "H" pulse width (Read)	110			ns
TSLR		SCL "L" pulse width (Read)	110			ns
TSDS	SDA	Data setup time	30			ns
TSDH	(DIN)	Data hold time	30			ns
TACC	SDA	Access time			240	ns
ТОН	(DOUT)	Output disable time	15			ns

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	31 of 44

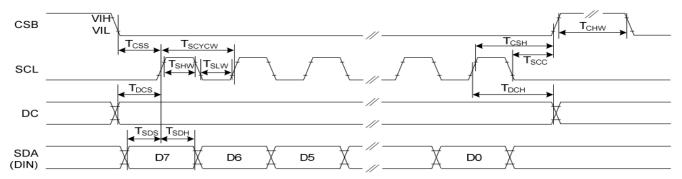


Figure: 4-wire Serial Interface Characteristics (Write mode)

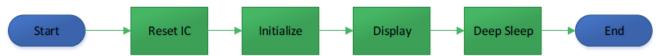


Figure: 4-wire Serial Interface Characteristics (Read mode) **TCSS** Chip select setup time 60 ns **TCSH** Chip select hold time 65 ns **CSB** TSCC Chip select setup time 20 ns **TCHW** Chip select setup time 40 ns **TSCYCW** Serial clock cycle (Write) 100 ns SCL "H" pulse width (Write) **TSHW** 35 ns SCL "L" pulse width (Write) **TSLW** 35 ns **SCL** Serial clock cycle (Read) **TSCYCR** 240 ns SCL "H" pulse width (Read) **TSHR** 110 ns SCL "L" pulse width (Read) **TSLR** 110 ns TDCS DC setup time 30 ns DC TDCH DC hold time 30 ns TSDS 30 **SDA** Data setup time ns **TSDH** (DIN) Data hold time 30 ns **TACC** Access time 240 **SDA** ns TOH (DOUT) Output disable time 15 ns

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	32 of 44

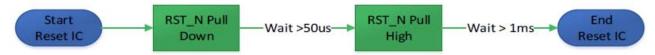
14. Power Consumption


Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25℃	-	120	mAs	-
Deep sleep mode	-	25℃	-	3	uA	-

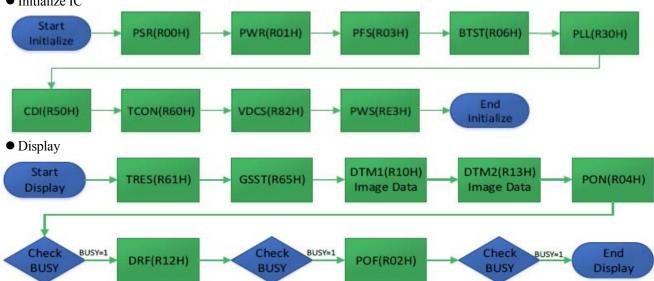
mAs=update average current× update time

15. Typical Operating Sequence

The flow chart below to update the EPD. The steps below refer to the flow chart in the respective sections.


• EPD Driving Flow Chart

Start: To supply 2.5V - 3.6V on VDD/VDDA/VDDIO then wait VDD= $95\% \times (2.3V - 3.6V)$ for at least> 1ms.


End: To remove 2.5V –3.6V from VDD/VDDA/VDDIO to 0V.

• Reset IC

End Reset IC: At this moment we will see RST N= High, BUSY= High and VDD current is less than or equal to 34uA.

• Initialize IC

End Display: At this moment we will see VGH= VDD, VGL/VDH/VDHR/VDL=0V and VDD current is less than or equal to 34uA.

Deep Sleep

End Deep Sleep: At this moment we will see VDDDO is approximately equal to 0V and VDD current is less than or equal to 1.1uA.Control pins defined as input types cannot be floating.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	33 of 44

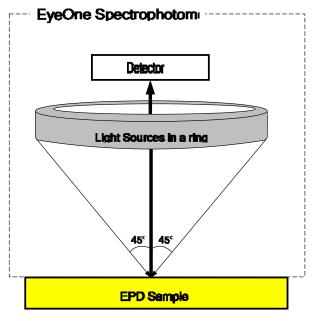
16. Optical characteristics

16. 1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

 $T=25\pm2$ °C, VDD=3.3V

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 16-1
Gn	2Grey Level	-	ı	KS+(WS-KS)×n(m-1)	-	L*	-
CR	Contrast Ratio	-	10	15	-		-
TZC	Black State L* value		-	13	14		Note 16-1
KS	Black State a* value		1	3	4		Note 16-1
WS	White State L* value		63	65	-		Note 16-1
RS	Red State L* value	Red	25	28	-		Note 16-1
KS	Red State a* value	Red	36	40	-		Note 16-1
Panel	Image Update	Storage and transportation	-	Update the white screen	-	-	-
ranei	Update Time	Operation	-	Suggest Updated once a day	-	-	-


WS: White state, KS: Black State, RS: Red State

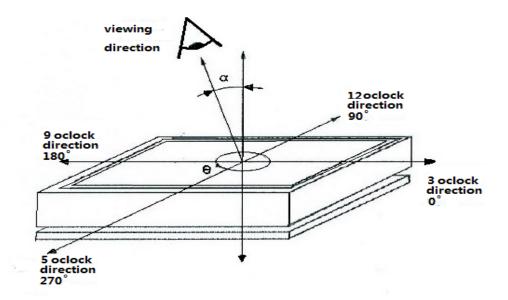
Note 16-1: Luminance meter: i - One Pro Spectrophotometer

16. 2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = RI/Rd

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.


File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	34 of 44

16.3 Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor \ _{white \ board} \qquad x \ (L \ _{center} \ / \ L \ _{white \ board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white \, board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	35 of 44

17. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged . Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	36 of 44

Data sheet status					
Product specification	The data sheet contains final product specifications.				
	Limiting values				
of the limiting values may cau at these or any other condition	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information					
Where application information is given, it is advisory and dose not form part of the specification.					
Product Environmental certification					
ROHS					

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

HOLITECH Confidential Page 36 of 42 2021/12/15

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	37 of 44

18. Reliability test

18.1 Reliability Test Items

	TEST	CONDITION	REMARK
1	High-Temperature Operation	T=40°C, RH=35%RH, For 240Hr	
2	Low-Temperature Operation	T = 0°C for 240 hrs	
3	High-Temperature Storage	T=50°C RH=35%RH For 240Hr	Test in white pattern
4	Low-Temperature Storage	T = -25°C for 240 hrs	Test in white pattern
5	High Temperature, High- Humidity Operation	T=40°C,RH=90%RH, For 168Hr	
6	High Temperature, High- Humidity Storage	T=50°C,RH=90%RH,For 240Hr	Test in white pattern
7	Temperature Cycle	-25°C(30min)~60°C(30min),50 Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency: 20~200Hz Direction: X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white/red pattern, hold time is 150S.

Note3: The function, appearance should meet the requirements of the test before and after the test.

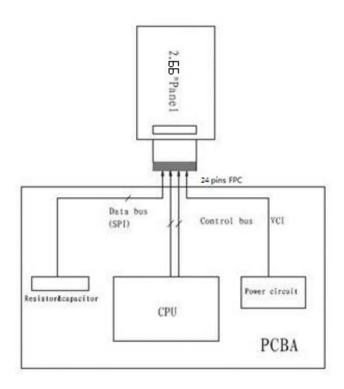
Note4: Keep testing after 2 hours placing at 20°C-25°C

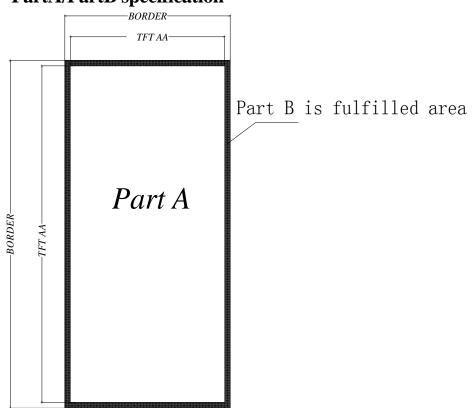
18.2 Product life time

The EPD Module is designed for a 5-year life-time with 25 °C/60%RH operation assumption. Reliability estimation testing with accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

18.3 Product warranty

Warranty conditions have to be negotiated between Xingtai and individual customers.


Xingtai provides 12+1(one month delivery time) months warranty for all products which are purchased from Xingtai.

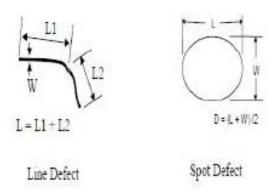

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	38 of 42

19.Block Diagram

20. PartA/PartB specification

HOLITECH Confidential Page 38 of 42 2021/12/15


JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	39 of 42

	Ship	ment Inspect	ion Standard			
	Equipm	ent: Electrical test	fixture, Point gau	ge		
Outline dimension	36.3(H)×71.82(V) ×0.9(D)	Unit: mm	Part-A	Active area	Part-B	Border area
	Temperature	Humidity	Illuminance	Distance	Time	Angle
Environment	19℃~25℃	55%±5%RH	800~1300Lux	300 mm	35Sec	
Defect type	Inspection method	Stan	dard	Part-A	A	Part-B
		D≤0	.25 mm	Ignor	e	Ignore
Spot	Electric Display	0.25 mm < D ≤ 0.4 mm		N≤4		Ignore
		D>0.4 mm		Not Allow		Ignore
Display unwork	Electric Display	Not A	Allow	Not Allow		Ignore
Display error	Electric Display	Not A	Allow	Not Allow		Ignore
		L≤2 mm,W≤0.2 mm Ignore		e	Ignore	
Scratch or line defect(include dirt)	Visual/Film card		0mm,0.2 <w≤ nm,</w≤ 	N≤2		Ignore
		L>5 mm,W>0.3 mm		Not Allow		Ignore
		D≤0.2mm Ignore		e	Ignore	
PS Bubble	Visual/Film card	0.2mm≤D≤0.35mm		N≤4		Ignore
		D>0.	35 mm	Not Allow		Ignore
		,	mm, Do not affect nm, Do not affect the		•	
Corner /Edge chipping	Visual/Film card	card				
D 1	Appearance defect should not cause electrical defects					
Remark	Appearance defects should not cause dimensional accuracy problems					
		L=long W=wic	le D=point size	N=Defects NO		

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	40 of 42

L=long W=wide D=point size

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

8 9 10 11

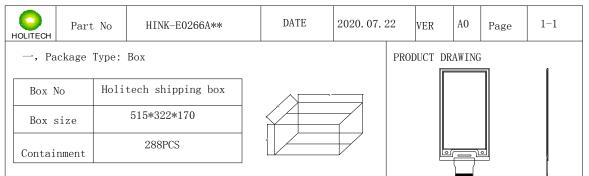
File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	41 of 42

22.Barcode

22.1 label appearance

22.2 QR scanned information (Total 28 code number+ 2 blank spaces)

	A BBBBBBB CC 🔲 DDD EEE F GGG 🔲 H III JJ KK
	1 2 3 4 5 6 7 8 9 10 (1
1	A——The factory code
2	BBBBBBB——Module name of EPD
3	CC——Production line
4	DDD——Date of production
(5)	EEE——Production lot
6	F——Separator
7	GGG——FPL Lot
8	H——Product status
9	III——TFT、PS、EC.
10	JJ——IC
(11)	KK——Serial NO.
	blank spaces

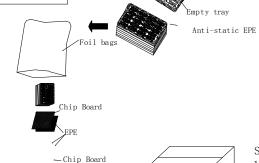

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.66" EPD	Module Number	HINK-E0266A85
Version	A0	Page Number	42 of 42

23. Packing

Packing Spec

Sheet No:



二,Inside package type:Plastic Trayunit: mm

pcs ocs
pcs
ocs
ocs
ocs
ocs

Step 3:

- 1) In each case, put 2 bags of desiccant then seal the trays with adhesive tapes.
- 2) Put the trays into foil bags.
- 3) heat seal the foil bags.

BOX

Step 4:

1) First put a chip board on the buttom of the box, then placed the down EPE, the left - right and front -back EPE.

- 2) Placed the sealed products into the box.
- 3) The last placed the up EPE on the top of the trays, and place a chip board on it.

Step 1:
Material: Tray, EPE
Put the product in to the
tray and keep the dispaly
side up. Then put
anti-static EPE in to
each holes.

Step 2:

- 1) Must keep the angle 180 degree placed between Anti-static EPE the neighboring Plastic trays.
 - 2) There are 12 layers product, total 24*12=288 pcs.
 - 3) An empty Plastic tray intersects put on the top of the plastic trays.

Step 5:

- 1) Seal the box with adhensive tapes 。
- 2) Paste the lable onto the exterior box, and the lable can't cover the safety ,

transfer and RoSH sign.

Design	Z. Z. Q	Approve	Н. Z. Р	Confirm	X.X.M
Date	2020. 07. 22	Date	2020. 07. 22	Date	2020. 07. 22