CUSTOMER

SAMPLE CODE · SH800480T024-IHC13

MASS PRODUCTION CODE . PH800480T024-IHC13

SAMPLE VERSION . 01

SPECIFICATIONS EDITION . 005

DRAWING NO. (Ver.) . LMD-PH800480T024-IHC13(Ver.002)

PACKAGING NO. (Ver.) PKG-PH800480T024-IHC13(Ver.001)

Customer Approved

Date:

Approved	Checked	Designer
黃秋源	石建莊	王聖硯
Oliver Huang	Stone Shin	Stephen Wang

☐ Preliminary specification for design input

Specification for sample approval

2019.11.22 TW RD APR

POWERTIP TECH. CORP.

Headquarters: No.8, 6th Road, Taichung Industrial Park,

Taichung, Taiwan

台中市 407 工業區六路 8號

TEL: 886-4-2355-8168

FAX: 886-4-2355-8166

E-mail: sales@powertip.com.tw

Http://www.powertip.com.tw

History of Version

Date (mm / dd / yyyy)	Ver.	Edi.	Description	Page	Design by
12/27/2017	01	001	New Drawing	-	Stephen
03/21/2018	01	002	New Sample	-	Stephen
08/30/2019	01	003	Added 1.8 items	11	Stephen
11/07/2019	01	004	Create the MOSFET for BL circuit	-	Stephen
11/15/2019	01	005	Update Spec	29-30	Stephen
				- >	

Total: 28 Pages

Contents

1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics
- 1.7 Touch Panel Characteristics
- 1.8 HYCON I²C Sensitivity command

2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 HDMI Characteristics

3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

4. RELIABILITY TEST

4.1 Reliability Test Condition

5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- 5.4 Terms of Warranty

Appendix: LCM Drawing

LCM Packaging Specifications

Note: For detailed information please refer to IC Datasheet: Primacy(TFT LCD): ILITEK: ILI6122M-9G / ILI5960-9G

1. SPECIFICATIONS

1.1 Features

Item	Standard Value			
Display Resolution	800 * 3 (RGB) * 480 Dots			
LCD Type	a-Si TFT , Normally white, Transmissive type			
Screen Size(inch)	5.0 inch			
Viewing Direction	6 O'clock			
Surface Treatment	Anti-Glare			
Color Configuration	RGB Vertical Strip			
Tarrah Danal	Projective Capacitive Touch Panel			
Touch Panel	USB HID Touch			
Driver IC	ILI6122M-9G / ILI5960-9G / HY4635(CTP)			
Backlight Type	White LED B/L			
Weight	126 g			
Interface	HDMI			
	THIS PRODUCT CONFORMS THE ROHS OF PTC			
ROHS	Detail information please refer website :			
	http://www.powertip.com.tw/news_detail.php?Key=1&cID=1			

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outline Dimension	121.0(W) x 75.9 (L) x 15.4 (H)	mm

LCD panel

Item	Standard Value	Unit
Viewing Area	110.0 (W) * 66.5 (L)	mm

Note: For detailed information please refer to LCM drawing.

1.3 Absolute Maximum Ratings

Module

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Dower Supply Voltage	VDD	GND=0	-0.3	+4.5	V	
Power Supply Voltage	VBus	GND=0	-0.3	+6.0	V	_
Operating Temperature	Top	-	-20	70	°C	
Storage Temperature	T _{ST}	-	-30	80	°C	

1.4 DC Electrical Characteristics

Module GND = 0V, Ta = $25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
0 1	VDD		3.0	3.3	3.6	V
Supply Voltage	VBus	ONE ON	4.75	5.0	5.25	V
Input Signal Voltage	V _{IH}	GND=0V	0.7*VDD	-	VDD	V
Input Signal Voltage	VIL		0	-	0.3*VDD	V
Supply Current	IVBus	V _{Bus} =5.0V	-	700	1000	mA

Note1: The customer has to check the input current is greater than 1.0A.

Note2: Supply voltage which is included backlight drive.

Note3: Maximum current for RGB screen is 710~720mA (Full Display).

Note4: We use advised USB 2.0/3.0 Y-cable to power supply.

1.5 Optical Characteristics

TFT LCD Module

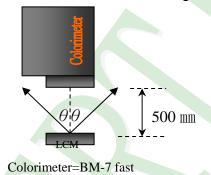
VCC= 3.3 V, Ta=25°C

Item		Symbol	Condition	Min.	Тур.	Max.	unit	-	
Response Time	Tr+Tf	25 ℃	-	-	35	55	ms	-	
	Тор	θΥ+			60	-			
Viouing Anglo	Bottom	θΥ-	CR ≥ 10		60	-	Dog	Note 4	
Viewing Angle	Left	θX-	CR 2 10		60	1	Deg.	Note 4	
	Right	θX+			60	1			
Contrast Rati	io	CR		500	600	-	-	Note 3	
	White	X		0.24	0.29	0.34			
	vviile	Υ		0.26	0.31	0.36			
Color of CIE	Red	Х	X To = 25°C	0.51	0.56	0.61			
Coordinate	Y	Neu	Y	Ta = 25°C	0.28	0.33	0.38		Note1
(With B/L & LCD	Croon	Х	θX , $\theta Y = 0^{\circ}$	0.29	0.34	0.39	-	Note i	
& Touch Panel)	Green	Y		0.54	0.59	0.64			
	Blue	Х		0.09	0.14	0.19			
	Diue	Y	A	0.04	0.09	0.14			
Average Brightr	ness								
Pattern=White Di	isplay	IV		800	1000		cd/m2	Note1	
(With B/L & LCD &	& Touch	IV		000	1000	-	Cu/IIIZ	Note	
Panel) *1			IF=90mA						
Uniformity									
(With B/L & LCD &	& Touch	∆B		70	-	-	%	Note1	
Panel) *2									

Note 1:

*1 : △B=B(min) / B(max) * 100%

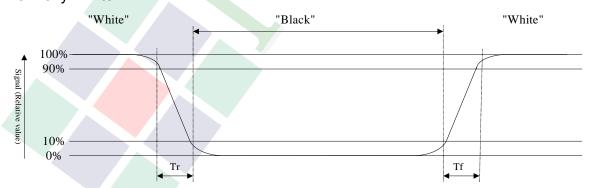
*2 : Measurement Condition for Optical Characteristics:


a: Environment: 25°C±5°C / 60±20%R.H, no wind, dark room below 10 Lux at typical lamp current and typical operating frequency.

b : Measurement Distance: 500 \pm 50 mm \rightarrow (θ = 0°)

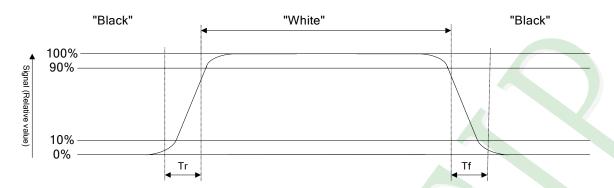
c: Equipment: TOPCON BM-7 fast, (field 1°), after 10 minutes operation.

d: The uncertainty of the C.I.E coordinate measurement ±0.01, Average Brightness ± 4%


To be measured at the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-7, after 10 minutes operation (module)

Note2: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The response time is defined as the time interval between the 10% and 90% of Amplitudes.

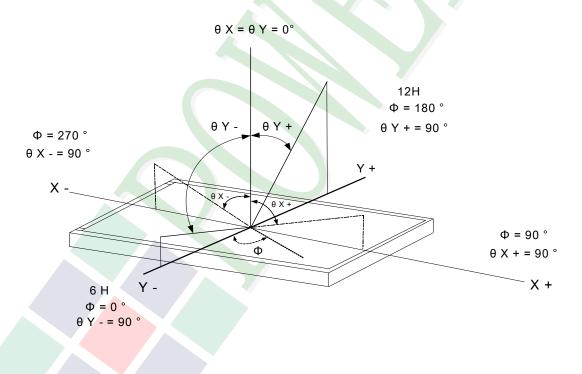

Refer to figure as below:

Normally White

Normally Black

Note3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula


Photo detector output when LCD is at "White" state

Contrast ratio (CR) =

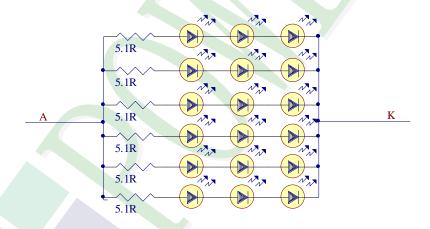
Photo detector output when LCD is at "Black" state

Note4: Definition of viewing angle:

Refer to figure as below:

1.6 Backlight Characteristics

Maximum Ratings


Item	Symbol	Min.	Max.	Unit	Remark
LED Forward Current	lF	210		mA	One I ED
LED Reverse Voltage	VR	10		V	One LED

Electrical / Optical Characteristics

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Forward Voltage	VF		16.2	18.0	19.2	V		
CIE Color Coordinate	X	IF=90mA	0.25	0.28	0.31			
(Without LCD)	Y		0.25	0.28	0.31	_		
Color			White					

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25℃ and I∟=90 mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 °C and I∟=90 mA. The LED life time could be decreased if operating I∟ is larger than 90 mA.

Other Description

Item	Conditions	Description
Life Time	Ta =25℃ IF= 90mA	50,000 hrs

1.7 Touch Panel Characteristics

Features

Item	Standard Value
Touch Panel Size	5"
Touch Type	Projective Capacitive Touch Panel
Input Method	Finger / 5 Points Touch
Output Interface	I ² C
IC	HYCON - HY4635
I ² C Address	0x38 (7-bit)

I²C Address

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	1	1	1	0	0	0	R/W

Bit 0: 0 for Write / 1 for Read

Mechanical Specifications

Item	Standard Value	Unit		
Viewing Area	110.0 (W) * 66.5 (L)			
Number of Sensing Channel	12 * 20			

Absolute Maximum Ratings

Absolute Maximum Ratii	190				
Item	Symbol	Condition	Min.	Max.	Unit
Supply Voltage	TPVDD	-	-0.3	+5.0	V
Operating Temperature	Тор	-	-20	+70	°C
Storage Temperature	T _{ST}	-	-30	+80	°C

DC Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	TPVDD	-	3.0	3.3	3.6	V

Touch Panel IC Read/Write description & Register Mapping

Reference: HYCON Touch Driver Porting Reference Guide.

1.8 HYCON I²C Sensitivity command:

Address	Register description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x92	GAIN	R/W		Sensitivity setting, setting range: 05						

Application reference:

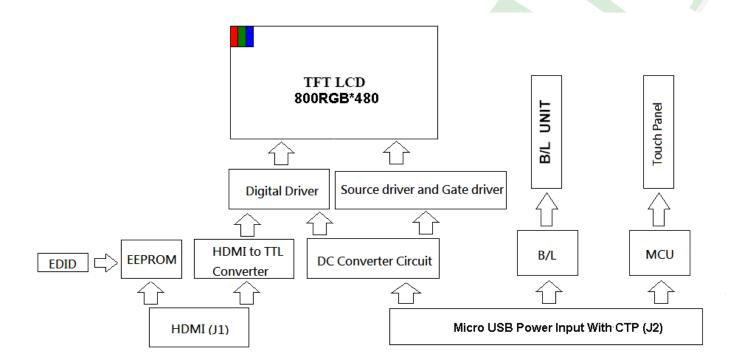
Register 0x92=02(Default) without cover lens

Caution!

At different cover lens thickness can lead to touch Sensitivity changed (e.g. ghost-touches).

Therefore, the touch needs to be thoroughly tested in the target application.

PTC application design suggestion is only for reference, please adjust based on your final design.


2. MODULE STRUCTURE

2.1 Counter Drawing

2.1.1 LCM Mechanical Diagram

* See Appendix

2.1.2 Block Diagram

2.2 Interface Pin Description

2.2.1 (J1:HDMI 1.3 A type Interface)

Pin#	Name	Description
1	TX2+	TMDS Data 2+
2	TX2 Shield	TMDS Data 2 Shield
3	TX2-	TMDS Data 2-
4	TX1+	TMDS Data 1+
5	TX1 Shield	TMDS Data 1 Shield
6	TX1-	TMDS Data 1-
7	TX0+	TMDS Data 0+
8	TX0 Shield	TMDS Data 0 Shield
9	TX0-	TMDS Data 0-
10	TXC+	TMDS Clock+
11	TXC Shield	TMDS Clock Shield
12	TXC-	TMDS Clock-
13	CEC	CEC
14	NC	No connection
15	SCL	Serial Clock for DDC
16	SDA	Serial Data for DDC
17	GND	Power ground
18	V5V	+5V Power
19	Hot Plug Detect	Hot Plug Detect

2.2.2 (J2:Micro USB Power Input & Capacitive Touch Panel Interface)

Pin#	Name	Description
1	VBus	VBus 4.75V-5.25V
2	D-	Data-
3	D+	Data+
4	ID	No connection
5	GND	Power ground.

2.3 **HDMI Characteristics**

2.3.1 Signal DC&AC Characteristics

DC ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	rearright control of the control of	,			
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{ID}	Analog input differential voltage (1)		75	1200	mV
V _{IC}	Analog input common-mode voltage ⁽¹⁾		AV _{DD} – 300	$AV_{DD} - 37$	mV
V _{I(OC)}	Open-circuit analog input voltage		AV _{DD} – 10	AV _{DD} + 10	mV
I _{DD(2PIX)}	Normal 2-pix/clock power supply current (2)	ODCK = 82.5 MHz, 2-pix/clock		370	mA
I _{PD}	Power-down current (3)	PD = low		10	mA
I _{PDO}	Output drive power-down current (3)	PDO = low		35	mA

Specified as dc characteristic with no overshoot or undershoot

Alternating 2-pixel black/2-pixel white pattern. ST = high, STAG = high, QE[23:0] and QO[23:0] C_L = 10 pF. (2)

Analog inputs are open circuit (transmitter is disconnected from TFP401/401A).

AC ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{ID(2)}	Differential input sensitivity ⁽¹⁾		150		1560	mV _{p-p}
t _{ps}	Analog input intra-pair (+ to –) differential skew (2)				0.4	t _{bit} (3)
t _{ccs}	Analog input inter-pair or channel-to-channel skew ⁽²⁾				1	t _{pix} (4)
t _{ijit}	Worst-case differential input clock jitter tolerance (2)(5)		50			ps
	Fall time of data and control signals (6)(7)	ST = low, C _L = 5 pF			2.4	ns
t _{f1}	rall time of data and control signals	ST = high, C _L = 10 pF			1.9	115
	Rise time of data and control signals ⁽⁶⁾⁽⁷⁾	ST = low, C _L = 5 pF			2.4	ns
ţ ₁	Rise time of data and control signals.	ST = high, C _L = 10 pF			1.9	115
	Rise time of ODCK clock ⁽⁶⁾	ST = low, C _L = 5 pF			2.4	ns
t _{r2}		ST = high, C _L = 10 pF			1.9	115
+	Fall time of ODCK clock ⁽⁶⁾	ST = low, C _L = 5 pF			2.4	ne
t _{f2}	Fall time of ODCK clock**	ST = high, C _L = 10 pF			1.9	ns
		1 pixel/clock, PIXS = low, OCK_INV = low	1.8			
t _{su1}	Setup time, data and control signal to falling edge of ODCK	2 pixel/clock, PIXS = high, STAG = high, OCK_INV = low	3.8			ns
		2 pixel and STAG, PIXS = high, STAG = low, OCK_INV = low	0.7			
		1 pixel/clock, PIXS = low, OCK_INV = low	0.6			
t _{h1}	Hold time, data and control signal to falling edge of ODCK	2 pixel and STAG, PIXS = high, STAG = low, OCK_INV = low	2.5			ns
		2 pixel/clock, PIXS = high, STAG = high, OCK_INV = low	2.9			

⁽¹⁾ Specified as ac parameter to include sensitivity to overshoot, undershoot and reflection.

By characterization

Measured differentially at 50% crossing using ODCK output clock as trigger

Rise and fall times measured as time between 20% and 80% of signal amplitude.

 t_{bit} is 1/10 the pixel time, t_{pix} to the period of the RxC input clock. The period of ODCK is equal to t_{pix} in 1-pixel/clock mode or $2t_{\text{pix}}$ when in 2-pixel/clock mode.

Data and control signals are QE[23:0], QO[23:0], DE, HSYNC, VSYNC. and CTL[3:1].

AC ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		1 pixel/clock, PIXS = low, OCK_INV = high	2.1				
t _{su2}	Setup time, data and control signal to rising edge of ODCK	2 pixel/clock, PIXS = high, STAG = high, OCK_INV = high	4			ns	
		2 pixel and STAG, PIXS = high, STAG = low, OCK_INV = high	1.5				
		1 pixel/clock, PIXS = low, OCK_INV = high	0.5				
t _{h2}	Hold time, data and control signal to rising edge of ODCK	2 pixel and STAG, PIXS = high, STAG = low, OCK_INV = high	2.4			ns	
		2 pixel/clock, PIXS = high, STAG = high, OCK_INV = high	2.1				
	ODCK frequency	PIX = low (1-PIX/CLK)	25		165	MHz	
TODCK		PIX = high (2-PIX/CLK)	12.5		82.5	IVITZ	
	ODCK duty-cycle		40%	50%	60%		
t _{pd(PDL)}	Propagation delay time from PD low to Hi-Z outputs				9	ns	
t _{pd(PDOL)}	Propagation delay time from PDO low to Hi-Z outputs				9	ns	
t _(HSC)	Transition time between DE transition to SCDT low ⁽⁸⁾			1e6		t _{pix}	
t _{t(FSC)}	Transition time between DE transition to SCDT high ⁽⁸⁾			1600	_	t _{pix}	
t _{d(st)}	Delay time, ODCK latching edge to QE[23:0] data output	STAG = low, PIXS = high		0.25	_	t _{pix}	

(8) Link active or inactive is determined by amount of time detected between DE transitions. SCDT indicates link activity.

2.3.2 Parameter Measurement Information

PARAMETER MEASUREMENT INFORMATION



Figure 1. Rise and Fall Times of Data and Control Signals

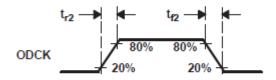


Figure 2. Rise and Fall Times of ODCK

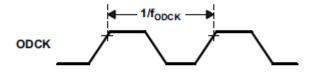


Figure 3. ODCK Frequency

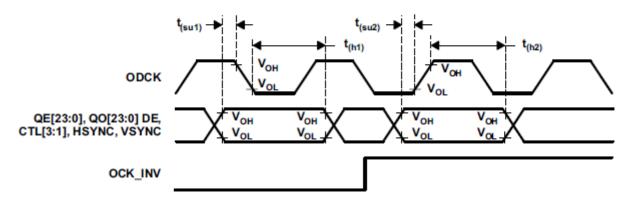



Figure 4. Data Setup and Hold Times to Rising and Falling Edges of ODCK

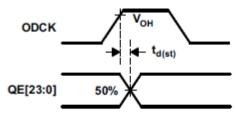


Figure 5. ODCK High to QE[23:0] Staggered Data Output

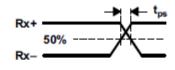


Figure 6. Analog Input Intra-Pair Differential Skew

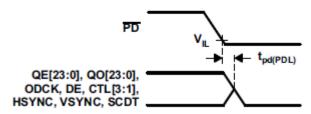


Figure 7. Delay From PD Low to Hi-Z Outputs

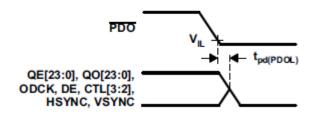


Figure 8. Delay From PDO Low to Hi-Z Outputs

PARAMETER MEASUREMENT INFORMATION (continued)

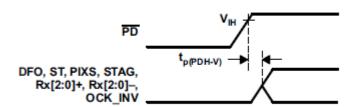


Figure 9. Delay From PD Low to High Before Inputs Are Active

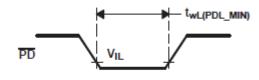


Figure 10. Minimum Time PD Low

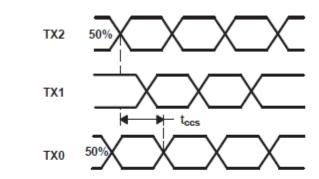


Figure 11. Analog Input Channel-to-Channel Skew

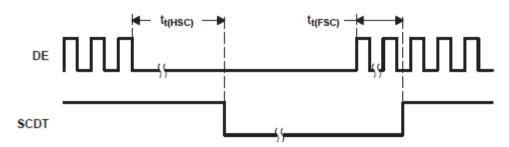


Figure 12. Time Between DE Transitions to SCDT Low and SCDT High

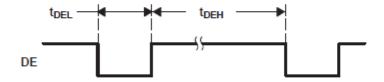
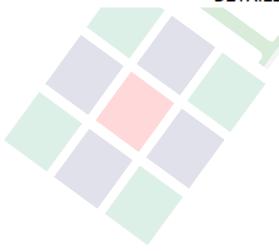
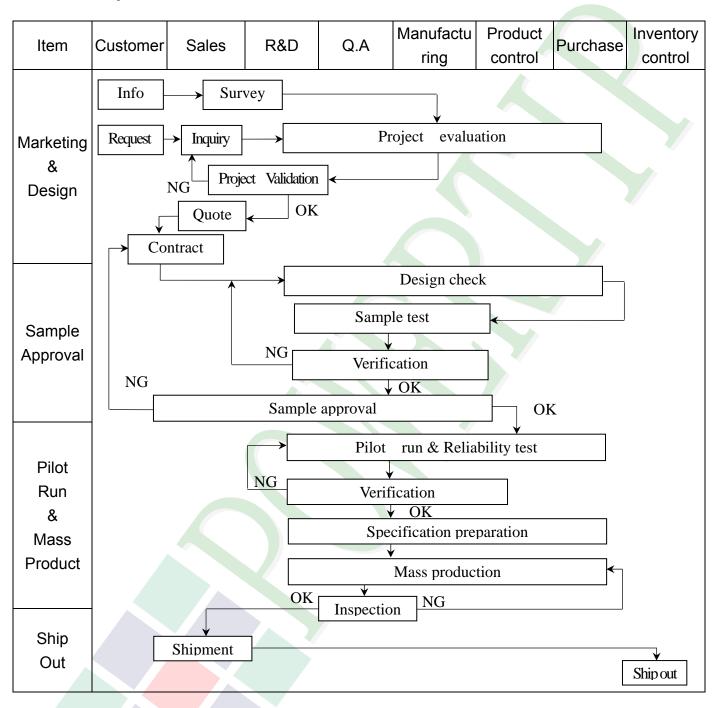
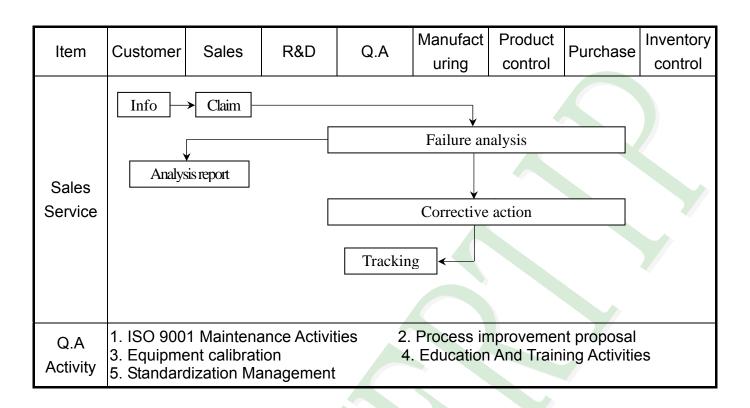



Figure 13. Minimum DE Low and Maximum DE High


DETAILED DESCRIPTION



3. QUALITY ASSURANCE SYSTEM

3.1 Quality Assurance Flow Chart

3.2. Inspection Specification

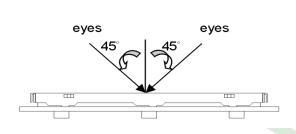
◆Scope: The document shall be applied to TFT-LCD Module for 3, 5" -15" (Ver.B01).

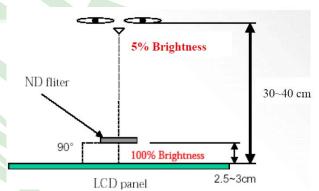
◆Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level Ⅱ.

◆Equipment: Gauge, MIL-STD, Powertip Tester, Sample

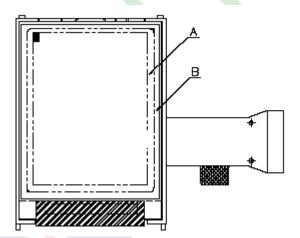
◆Defect Level: Major Defect AQL: 0. 4; Minor Defect AQL: 1. 5

OUT Going Defect Level: Sampling.


♦Standard of the product appearance test:


a. Manner of appearance test:

(1). The test best be under $20W\times2$ fluorescent light(about $300lux \sim 500lux$)


, and distance of view must be at 30~40 cm.

(2). The test direction is base on about around 45° of vertical line.

(3). Definition of area.

A area: viewing area

B area: Outside of viewing area

(4). Standard of inspection: (Unit: mm)

• NO₄	Item↔		Criteri	on₽	Level		
		1. 1The part number is inconsistent with work order of production.				Major₽	
01₽	Product condition.	1. 2 Mixed prod	uct types.↩		Major₽		
		1. 3 Assembled i	3 Assembled in inverse direction.₽				
02₽	Quantity₽	2. 1The quantity	v is inconsistent with	ı work order of production.↓	Major₽		
03₽	Outline dimension	3. 1Product din diagram.↓	ension and structu	re must conform to structure	Major₽		
		4. 1 Missing line	character and icon	دي	Major₽		
		4. 2 No function	or no display.₽		Major₽		
		4. 3 Display malfunction. 🕫					
04₽	Electrical Testing	4. 4 LCD viewing angle defect.₽			Major₽		
		4. 5 Current consumption exceeds product specifications.			Major₽		
		4. 6Mura cannot be seen through 5% ND filter at 50% Gray ↔ , should be judged by the viewing angle of 90 degree.			Minor₽		
		4)	Ŧ.				
			Item₽	Acceptance (Q'ty)₽			
			Bright Dot.	≦ 4₽			
	Dot defect↓	Dot Defect⊹	Dark Dot₽	<u>≨</u> 5₽			
	↔ (Bright dot,↔	Defect	Joint Dot ↔	<u>≨</u> 3₽			
05₽	Dark dot) ↔		Total₽	<u>≨</u> 7₽ ₽	Minor₽		
	ب On -display₊	5. 1 Inspection	pattern: full white,	, full black, Red, Green and			
	On -uispiay⊕		blue scree				
				ect area >1/2 dot.∉			
			e between two dot d	****			
		5.4 Bright dot	that can not be seen	through 5% ND filter.↓			

◆Specification For TFT-LCD Module 3. 5″~15″:

NO₽	Item∉		Criterion					Level«	
	ή ή	6. 1 Round type (Non-display or display): ↔							
		Ì	Dimensio	Dimension (diameter = Φ) Acceptance (Q'ty) Θ					
	₩		A area₽ B area₽				₽ ₽		
	Black or white			$\Phi \leq 0$.		Ignore₽		₽	
	Dot, scratch,↓		0.25	< Φ ≦ 0.:	50₽	5₽	Ignore	تها س	
	contamination↓		$\Phi > 0.50$.50₽	0.	Ignore*		
	↓ Round type↓		•	Total₽		5₽	47		
	X.	. 2 Li	ne type(No	n-display o	r displa	ıy):₽		(0):	
	<u> </u>	mo	dule size∉	Length	W	Vidth (W)₽	Acceptanc A area₽	e (Q*ty)+ B area+	1
06₽	·			(L)₽		W ≤ 0.03¢	Ignore@	D alea+	Minor
	$\Phi = (x+y)/2\psi$	4			0.03	<w <u="">≤ 0.05₽</w>	4₽		,
				L ≦5.0¢		<w <u="">≤ 0.10€</w>	2∢□	_ [,
	Line type↓	3.5"	3.5" to less 9"↔	9**		W >0.10₽	As round	Ignore :	,
	Line type	7+					type₽		
	∫ੈ W↔				Total	l₽	5₽		
	\sim 1			47		W ≤ 0.05¢	Ignore₽	+	,
	→ı L+ +			L ≤10.0¢	0.05	<w <u="">≨ 0.10₽</w>	54□		
		9	" to 15"₽	4		W >0.10€	As round type₽	Ignore	
					Tota	l₽	5₽	←	
		له							
			n	/1º ·		Acceptar	nce (Q'ty)↔	ت	
	Polarizer↔ Bubble↔	D		Dimension (diameter: Φ)₽		A area∉			
07↩				Φ ≤ 0.25₽		Ignore₽		47	
			0.25 < Φ ≦ 0.50₽		ę	4₽		₽	Minor
			0.50 <	$\Phi \leq 0.80$	4	1₽	Igno	re↩ ↩	
				Φ >0.80	t)	0€		47	
			7	Γotal₽		5₽		₽	

◆Specification For TFT-LCD Module 3. 5 _~15 _= =

Symbols: X: The length of crack X: The thickness of crack t: The thickness of glass a: LCD side length 8. 1 General glass chip: 8. 1. 1 Chip on panel surface and crack between panels: 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

◆Specification For TFT-LCD Module 3. 5″_~15″ :

Symbols: X: The length of crack Z: The thickness of crack T: The thickness of glass 8.1.2 Corner crack: X. Y. Z. \$\frac{1}{5} \text{ a.c.} \text{ Crack can't enter viewing area.}} \text{ Z \leq 1/2 to } \text{ Mino}	NO↩	Item₽	Criterion₽			
$X, \qquad Y, \qquad Z \leq 1/2 \text{ to}$ $\leq 1/5 \text{ a.e.} \text{Crack can't enter viewing area.o.} \qquad Z \leq 1/2 \text{ to}$ $\leq 1/5 \text{ a.e.} \text{Crack can't exceed the half of SP width.o.} \qquad 1/2 \text{ t.} < Z \leq 2 \text{ t.}$ $\approx 8.2 \text{ Protrusion over terminal:o.}$ $8.2.1 \text{ Chip on electrode pad:o.}$ $X = X = X = X = X = X = X = X = X = X =$			Symbols: X: The length of crack X: The thickness of crack t: The thickness of glass 8. 1. 2 Corner crack:			
viewing area view			Y. Y. Z.			
The crack of glass φ 8. 2 Protrusion over terminal: φ 8. 2. 1 Chip on electrode pad: φ $X = X = X = X = X = X = X = X = X = X =$			viewing area Viewing area L ≤ 1/2 to			
8. 2. 1 Chip on electrode pad: \checkmark X_{φ} X	በይ	The crack of alaca	half of SP width.	Minor		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VO	0. Z Flotiusion over terminar.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ze X Y Z			
Front ϕ $\leq a\phi$ $\leq 1/2 \text{ W}\phi$ $\leq t\phi$ ϕ Back ϕ $\leq a\phi$ $\leq W\phi$ $\leq 1/2 t\phi$			X X			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			Front $\leq a \varphi$ $\leq 1/2 \text{ W} \varphi$ $\leq t \varphi$			
			$ \mathbf{Back}\varphi \leq \mathbf{a}\varphi \qquad \leq \mathbf{W}\varphi \leq \mathbf{I}/2 \varphi $			

◆Specification For TFT-LCD Module 3. 5__~15_":

NO₄□	Item₽	Criterion₽	Level⊍
	e crack of glass₽	Symbols: X: The length of crack Z: The thickness of crack t: The thickness of glass 8. 2. 2 Non-conductive portion: X: The thickness of glass 8. 2. 2 Non-conductive portion: X: The width of crack. W: terminal length. a: LCD side length. X: The thickness of glass 8. 2. 2 Non-conductive portion: X: The width of crack. W: terminal length. a: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. A: LCD side length. X: The width of crack. W: terminal length. A: LCD side length. A: LCD	Level.

◆Specification For TFT-LCD Module 3. 5 _~15 _= :

• NO ₽	Item₽	Criterion. J	Level
09₽	Backlight elements↓	9. 1 Backlight can't work normally.↓	Major∂
		9. 2 Backlight doesn't light or color is wrong.↓	Major∂
		9. 3 Illumination source flickers when lit.	Major∂
10€	10. 2 No short circuits in components on PCB or FPC. 10. 3 Parts on PCB or FPC must be: no wrong parts, missing parts or excess parts. General appearance 10. 4 Product packaging must the same as specified on packaging specification sheet.	10. 1Pin type - quantity - dimension must match type in structure diagram.ಳ	Major∂
		10. 2 No short circuits in components on PCB or FPC.	Major√
		10. 3 Parts on PCB or FPC must be: no wrong parts, missing parts or excess parts.↓	Major∂
		10. 4 Product packaging must the same as specified on packaging specification sheet.↓	Minor↓
		Minor⊍	
		10. 6 The PCB or FPC between B/L assembled distance(PCB or ← FPC) is ≤1.5 mm. ←	Minor∂

4. RELIABILITY TEST

Reliability Test Condition

(Ver.B01)

7.1	(Ver.DOT)					
NO.	TEST ITEM	TEST CONDITION				
1	High Temperature Storage Test	Keep in +80 ±5°C 240 hrs				
2	Low Temperature Storage Test	Keep in −30 ±5°C 240 hrs				
3	High Temperature / High Humidity Storage Test	Keep in +60 °C / 90% R.H duration for 240 hrs (Excluding the polarizer)				
		-30°C → +25°	$\mathbb{C} \to +80^{\circ}\mathbb{C} \to +25^{\circ}\mathbb{C}$			
4	Temperature Cycling	(30mins) (5mins	s) (30mins) (5mins)			
1	Storage Test	2	20 Cycle			
		Air Discharge:	Contact Discharge:			
	ESD Test	Apply 2 KV with 5 times	Apply 250 V with 5 times			
		Discharge for each polarity +/-	discharge for each polarity +/-			
		1. Temperature ambiance : 15° C $\sim 35^{\circ}$ C				
5		2.Humidity relative: 30%~60% 3.Energy Storage Capacitance(Cs+Cd): 150pF±10%				
		4.Discharge Resistance(Rd): 330 Ω±10%				
		5.Discharge, mode of operation :				
		Single Discharge (time between successive discharges at least 1 sec)				
		(Tolerance if the output voltage	indication: ±5%)			
		1.Sine wave 10~55 Hz frequer	ncy (1 min/sweep)			
6	Vibration Test (Packaged)	2. The amplitude of vibration :1. 5 mm				
	(1 ackageu)	3.Each direction (X \ Y \ Z) duration for 2 Hrs				
		Packing Weight (Kg) Drop Height (cm)			
		0 ~ 45.4	122			
	Drop Test	45.4 ~ 90.8	76			
7	(Packaged)	90.8 ~ 454	61			
		Over 454	46			
			ndgag / 6 sides each 14ims			
		Drop Direction: 1 corner / 3	euges / 0 sides each [time			

©Result Evaluation Criteria:

Under the display quality test conditions with normal operations with normal operation state. Do not change these conditions as such changes may affect practical display function.

(Normal operation state) Temperature: +20~30°C **Humidity: 50~70%**

Atmospheric pressure: 86~106Kpa

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

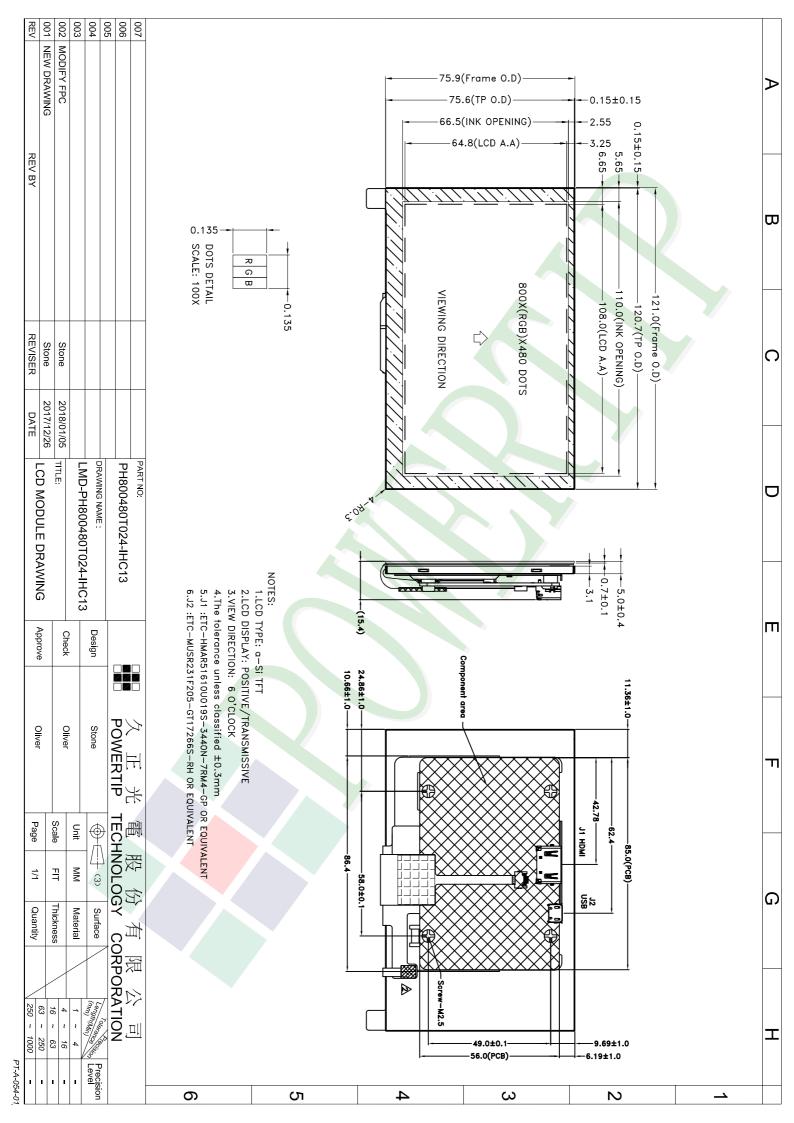
5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully ,do not touch , push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.
- 5.2.8 To control temperature and time of soldering is 320±10°C and 3-5 sec.
- 5.2.9 To avoid liquid (include organic solvent) stained on LCM.

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is 25° C $\pm 5^{\circ}$ C and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

using and storage conditions.


5.4 TERMS OF WARRANTY

5.4.1 Applicable warrant period

The period is within thirteen months since the date of shipping out under normal

5.4.2 Unaccepted responsibility

This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.

Approve Check Contact Ver.001 LCM包裝規格書 Oliver Oliver Stone Documents NO. PKG-PH800480T024-IHC13 LCM Packaging Specifications 1.包裝材料規格表 (Packaging Material): (per carton) 1Pcs Weight Item Model Dimensions (mm) Total Weight No. Ouantity PH800480T024-IHC13 121.0 X 75.9 1 成品 (LCM) 0.126 36 4.536 抗靜電氣泡袋(1)Bubble Bag 0.0047 36 2 BAG170150AWBBA 170 X 150 0.1692 0.014 42 3 A4隔板(2)A4 Partition 245 X 70 X 2.5 BX24500070BNBA 0.588 B4隔板(3)B4 Partition 293 X 70 X 2.5 4 BX29300070BLBA 0.012 12 0.144 5 海綿墊(4)Foam Rubber Cushion OTFOAM00006ABA 0.02 12 290 X 240 X 10 0.24 C3內盒(5)Product Box BX31025510AABA 0.263 6 310 X 255 X 100 6 1.578 7 外紙箱(6)Carton 527 X 325 X 360 1.092 BX52732536CCBA 1 1.092 8 9 2.一 整箱總重量 (Total LCD Weight in carton): 8.35 Kg±10% 3.單箱數量規格表 (Packaging Specifications and Quantity): (1)Quantity Of Spacer: A4隔板 X 7, B4隔板 X 2 (2)Total LCM quantity in carton: quantity per box x no of boxes 36 (4)海綿墊. Foam Rubber Cushion (1)抗靜電氣泡袋+LCM Bubble Bag+LCM (2) A4隔板-A4 Partition (3) B4隔板 **B4** Partition 11 (4) 海綿墊 Foam Rubber Cushion (6)外紙箱 Carton (5)C3內盒 Product Box 記 事 項 (REMARK) 4.放置格示意圖: 4. Each divider is placed inside a product Box ■ 模組(LCM)