Product Specification Part Name: OEL Display Module Part ID: UG-6028GDEAF01 Doc No.: SAS1-I003-B From: Univision Technology Inc. Approved by ## **Univision Technology Inc.** 8, Kebei RD 2, Science Park, Chu-Nan, Taiwan 350, R.O.C. #### Notes: - 1. Please contact Univision Technology Inc. before assigning your product based on this module specification - 2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by Univision Technology Inc. for any intellectual property claims or other problems that may result from application based on the module described herein. ## Revised History | Part Number | Revision | Revision Content | Revised on | |----------------|----------|---|----------------| | UG-6028GDEAF01 | A | New | April 11, 2006 | | UG-6028GDEAF01 | В | Page 1 Section 1.2 3) Modify Panel Thickness 1.70 → 1.60 Page 2 Section 1.4 Update Mechanical Drawing from the Applicable COF Number & Pin Definition Modification Page 3~4 Section 1.5 Update Pin Definition Description Page 5 Section 1.6 Modify Application Circuit Page 6 Section 2 Update Absolute Maximum Ratings Page 7 Section 3.1 & 3.2 Reset Optics Characteristics to Section 3.1 Modify C.I.E. White (0.29±0.04, 0.33±0.04)→(0.30±0.04, 0.33±0.04) Red (0.61±0.04, 0.36±0.04)→(0.64±0.04, 0.34±0.04) Green (0.30±0.04, 0.4±0.04)→(0.31±0.04, 0.62±0.04) Blue (0.14±0.04, 0.19±0.04)→(0.14±0.04, 0.16±0.04) Modify Dark Room Contrast (Typ) >1000:1 → 2000:1 Integrate DC Characteristics with General Electrical Characteristics Page 8~11 Section 3.3 Update AC Characteristics Page 12 Section 4.2.1 Update Power up Sequence Page 13 Section 4.4 Update Initialization Page 20 Section 7 Update Package Specifications | June 9, 2008 | | | | | | # CONFIDENTIAL #### Notice: No part of this material may be reproduces or duplicated in any form or by any means without the written permission of Univision Technology Inc. Univision Technology Inc. reserves the right to make changes to this material without notice. Univision Technology Inc. does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of Foreign Exchange and Foreign Trade Law of Taiwan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. #### © Univision Technology Inc. 2008, All rights reserved. All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies. ## **Contents** | Re | visi | on History | i | |-----------|-------|---|-------| | No | otice | ? | ii | | Ca | onte | nts | iii | | 1. | Ba | isic Specifications | 1~5 | | | 1.1 | Display Specifications | | | | 1.2 | | | | | 1.3 | | | | | 1.4 | Mechanical Drawing | 2 | | | 1.5 | Pin Definition | 3 | | | 1.6 | Block Diagram | 5 | | 2. | Ab | solute Maximum Ratings | 6 | | | | tics & Electrical Characteristics | | | | 3.1 | Optics Characteristics | | | | 3.2 | DC Characteristics | 7 | | | 3.3 | AC Characteristics | 8 | | 4 | | 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics | 8 | | 1 | | 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics | 9 | | | | 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics | 10 | | | | 3.3.4 RGB Interface Timing Characteristics | 11 | | 4. | Fu | nctional Specification | 12~13 | | | 4.1 | Commands | 12 | | | 4.2 | Power down and Power up Sequence | 12 | | | | 4.2.1 Power up Sequence | 12 | | | | 4.2.2 Power down Sequence | 12 | | | 4.3 | Reset Circuit | 12 | | | 4.4 | Actual Application Example | 13 | | 5. | Rel | liability | 14 | | | 5.1 | | | | | 5.2 | | | | | 5.3 | Failure Check Standard | 14 | | 6. | Ou | tgoing Quality Control Specifications | 15~19 | | | 6.1 | Environment Required | 15 | | | 6.2 | 1 & | | | | 6.3 | Criteria & Acceptable Quality Level | 15 | | | | 6.3.1 Cosmetic Check (Display Off) in Non-Active Area | | | | | 6.3.2 Cosmetic Check (Display Off) in Active Area | | | | | 6.3.3 Pattern Check (Display On) in Active Area | | | 7. | Pac | ckage Specifications | 20 | | 8. | Precautions When Using These OEL Display Modules | 21~23 | |----|---|-------| | | 8.1 Handling Precautions | 21 | | | 8.2 Storage Precautions | | | | 8.3 Designing Precautions | | | | 8.4 Precautions when disposing of the OEL display modules | | | | 8.5 Other Precautions | 23 | # CONFIDENTIAL #### Doc. No: SAS1-I003-B ## 1. Basic Specifications #### 1.1 Display Specifications 1) Display Mode: Passive Matrix 2) Display Color: 262,144 Colors (Maximum) 3) Drive Duty: 1/128 Duty #### 1.2 Mechanical Specifications 1) Outline Drawing: According to the annexed outline drawing 2) Number of Pixels: $160 \text{ (RGB)} \times 128$ 3) Panel Size: 35.80 × 30.80 × 1.60 (mm) 4) Active Area: 28.78 × 23.024 (mm) 5) Pixel Pitch: 0.06 × 0.18 (mm) 6) Pixel Size: 0.04 × 0.164 (mm) 7) Weight: 3.6 (g) ### 1.4 Mechanical Drawing ## 1.5 Pin Definition | Pin Number | Symbol | Type | Function | |----------------|----------------|------|--| | Power Supply | y | • | | | 31 | VDD. | P | Power Supply for Logic Circuit This is a voltage supply pin. It must be connected to external source. | | 8 | 8 VDDIO | | Power Supply for Interface Logic Level This is a voltage supply pin. It should be match with MCU interface voltage level. It must always be equal or lower than VDD. | | 30 | VSS | P | Ground of Logic Circuit A reference for the logic pins. It must be connected to external ground. | | 3, 33 | VDDH | P | Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. It must be connected to external source. | | 2, 34
4, 32 | VSDH
VSSH | Р | Ground of OEL Panel These are the ground pins for analog circuits. It must be connected to external ground. VSDH: Segment (Data Driver) VSSH: Common (Scan Driver) | | Driver | | | Country Countr | | | IREF | I/O | Current Reference for Brightness Adjustment This pin is segment (data) current reference pin. A $68k\Omega$ resistor should be connected between this pin and VSS. | | 7
6 | OSCA1
OSCA2 | I | Fine Adjustment for Oscillation The frequency is controlled by external $10k\Omega$ resistor between OSCA1 and OSCA2. The oscillator signal is used for system clock generation. When the external clock mode is selected, OSCA1 is used external clock input. | | RGB Interfac | ce | | | | 9 | VSYNCO | О | Vertical Synchronization Triggering Signal | | 10 | VSYNC | I | Vertical Synchronization Input | | 11 | HSYNC | I | Horizontal Synchronization Input | | 12 | DOTCLK | I | Dot Clock Input | | 13 | ENABLE | I | Video Enable Input | | MCU Interfa | ce | | | | 14 | CPU | I | Select the CPU Type Low: 80XX-Series MCU High: 68XX-Series MCU. | | 15 | PS | I | Select Parallel/Serial Interface Type Low: Serial Interface High: Parallel Interface | | 29 | RESETB | I | Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed. | ## 1.5 Pin Definition (Continued) | Pin Number | Symbol | Type | Function | |-------------|---------------|------|--| | MCU Interfa | ce (Continued |) | | | 26 | CSB | I | Chip Select Low: SEPS525 is selected and can be accessed. High: SEPS525 is not selected and cannot be accessed. | | 25 | RS | I | Data/Command Control Low: Command High: Parameter/Data | | 27 | RDB | I | Read or Read/Write Enable 68XX Parallel Interface: Bus Enabled Strobe (Active High) 80XX Parallel Interface: Read Strobe Signal (Active Low) While using SPI, it must be connected to VDD or VSS. | | 28 | WRB | I | Write or Read/Write Select 68XX Parallel Interface: Read (Low)/Write (High) Select 80XX Parallel Interface: Write Strobe Signal (Active Low) While using SPI, it must be connected to VDD or VSS. | | 16~24 | D17~D9 | I/O | Host Data Input/Output Bus These pins are 9-bit bi-directional data bus to be connected to the microprocessor's data bus. PS Description D[17]/SCL: Synchronous Clock Input 0 D[16]/SDI: Serial Data Input D[15]/SDO: Serial Data Output 1 9-bit Bus: D[17:9] 8-bit Bus: D[17:10] While using SPI, the unused pins must be connected to VSS. | | Reserve | | | | | 1, 35 | N.C. (GND) | - | Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground. | Doc. No: SAS1-I003-B ### 1.6 Block Diagram MCU Interface Selection: CPU, PS Pins connected to MCU interface: D17~D9, RS, CSB, RDB, WRB, and RESETB Pins connected to RGB interface: D17~D12, VSYNC, HSYNC, DOTCLK, and **ENABLE** C1, C3, C5: 0.1µF C2: 4.7µF C4, C6: 4.7µF / 25V Tantalum Capacitor R1: $68k\Omega$ R2: $10k\Omega$ #### Doc. No: SAS1-I003-B ### 2. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Notes | |-----------------------------|---------------------|------|-----|------|-------| | Supply Voltage for Logic | V_{DD} | -0.3 | 4 | V | 1, 2 | | Supply Voltage for I/O Pins | V_{DDIO} | -0.3 | 4 | V | 1, 2 | | Supply Voltage for Display | $ m V_{DDH}$ | -0.3 | 16 | V | 1, 2 | | Operating Temperature | T_{OP} | -30 | 70 | °C | _ | | Storage Temperature | T_{STG} | -40 | 80 | °C | _ | Note 1: All the above voltages are on the basis of "VSS = 0V". Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. # CONFIDENTIAL ## Doc. No: SAS1-I003-B ## 3. Optics & Electrical Characteristics #### 3.1 Optics Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|--------------------|---|------|---------|------|-------------------| | Brightness (White) | L_{br} | With Polarizer (Note 3) | 75 | 100 | - | cd/m ² | | CIE (White) | (x) | With Dolonizon | 0.26 | 0.30 | 0.34 | | | C.I.E. (White) | (y) | With Polarizer (Note 3) With Polarizer With Polarizer With Polarizer With Polarizer | 0.29 | 0.33 | 0.37 | | | C.I.E. (Red) | (x) | With Polorizor | 0.60 | 0.64 | 0.68 | | | C.I.E. (Keu) | (y) With Polarizer | 0.30 | 0.34 | 0.38 | | | | C.I.E. (Green) | (x) | With Polorizor | 0.27 | 0.31 | 0.35 | | | C.I.E. (Gleen) | (y) | With Polarizer (Note 3) With Polarizer With Polarizer With Polarizer With Polarizer | 0.58 | 0.62 | 0.66 | | | C.I.E. (Blue) | (x) | With Polorizor | 0.10 | 0.14 | 0.18 | | | C.I.E. (Diue) | (y) | Willi Folalizei | 0.12 | 0.16 | 0.20 | | | Dark Room Contrast | CR | | - | >2000:1 | _ | | | View Angle | | | >160 | _ | _ | degree | ^{*} Optical measurement taken at $V_{DD} = 2.8V$, $V_{DDH} = 13V$. Software configuration follows Section 4.4 Initialization. ### 3.2 DC Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--|---------------------|---------------------------|---------------------|-----|-------------------|------| | Supply Voltage for Logic | V _{DD} | | 2.6 | 2.8 | 3.3 | V | | Supply Voltage for I/O Pins | V_{DDIO} | | 1.6 | 2.8 | 3.3 | V | | Supply Voltage for Display | V_{DDH} | Note 3 | 12.5 | 13 | 13.5 | V | | High Level Input | V_{IH} | | $0.8 \times V_{DD}$ | _ | V_{DD} | V | | Low Level Input | V_{IL} | | 0 | _ | 0.4 | V | | II: -1. I1 O44 | V_{OH1} | $I_{OH} = -0.4 \text{mA}$ | V 04 | _ | | V | | High Level Output | V_{OH2} | $I_{OH} = -0.4 \text{mA}$ | V_{DD} -0.4 | | | V | | Low Lovel Output | V_{OL1} | $I_{OL} = -0.1 \text{mA}$ | | | 0.4 | V | | Low Level Output | V_{OL2} | $I_{OL} = -0.1 \text{mA}$ | | _ | 0.4 | V | | On anoting Cumont for V | т | Note 4 | _ | 2.5 | 3.5 | μΑ | | Operating Current for V _{DD} | I_{DD} | Note 5 | _ | 2.5 | 3.5 | μΑ | | Operating Current for V | T | Note 4 | _ | 16 | 19 | mA | | Operating Current for V _{DDH} | I_{DDH} | Note 5 | _ | 27 | 32 | mA | Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{DDH}) are subject to the change of the panel characteristics and the customer's request. Note 4: $V_{DD} = 2.8V$, $V_{DDH} = 13V$, 50% Display Area Turn on. Note 5: $V_{DD} = 2.8V$, $V_{DDH} = 13V$, 100% Display Area Turn on. ^{*} Software configuration follows Section 4.4 Initialization. #### Doc. No: SAS1-I003-B ### 3.3 AC Characteristics 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics: | $(\mathbf{W}_{})$ | = 2.8 V, | т – | 25°C\ | |-------------------|----------|------|-------| | (v DD | - 2.0 v, | 1a — | 43 C) | | | | | | עטי – | · , · ; | a - 23 C) | |-------------------|-----------------------------|-----------------------|-----|-------|---------|-----------| | Symbol | Description | · | Min | Max | Unit | Port | | t | Address Setup Timing | (Read) | 10 | - | ns | | | $t_{ m AH6}$ | Address Setup Tilling | (Write) | 10 | - | ns | CSB | | 4 | Addrage Hold Timing | (Read) | 5 | - | ns | RS | | $t_{ m AS6}$ | Address Hold Timing | (Write) | 5 | - | ns | | | $t_{\rm CYC6}$ | System Cycle Timing | | 200 | - | ns | | | t _{ELR6} | Read "L" Pulse Width | | 90 | - | ns | | | $t_{\rm EHR6}$ | Read "H" Pulse Width | | 90 | - | ns | Е | | $t_{\rm CYC6}$ | System Cycle Timing | | 100 | - | ns | E | | $t_{\rm ELW6}$ | Write "L" Pulse Width | Write "L" Pulse Width | | - | ns | | | $t_{\rm EHW6}$ | Write "H" Pulse Width | | 45 | - | ns | | | $t_{ m RDD6}$ | Read Data Output Delay Time | * CI15.D | 0 | 70 | ns | | | t _{RDN6} | Data Hold Timing | - С1 — 13рг | 0 | 70 | ns | D[17:9] | | $t_{ m DS6}$ | Data Setup Timing | | 40 | | ns | M(1/19] | | t _{DH6} | Data Hold Timing | | 10 | | ns | | ^{*} All the timing reference is 10% and 90% of $V_{\rm DD}$. 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics: $(V_{DD} = 2.8V, T_a = 25^{\circ}C)$ | Symbol | Description | Min | Max | Unit | Port | |----------------------|---|-----|-----|------|---------| | t_{AS8} | Address Setup Timing | 5 | _ | ns | CSB | | t_{AH8} | Address Hold Timing | 5 | - | ns | RS | | $t_{\rm CYC8}$ | System Cycle Timing | 200 | - | ns | | | t_{RDLR8} | Read "L" Pulse Width | 90 | - | ns | RDB | | $t_{\rm RDHR8}$ | Read "H" Pulse Width | 90 | - | ns | | | $t_{\rm CYC8}$ | System Cycle Timing | 100 | - | ns | | | t _{WRLW8} | Write "L" Pulse Width | 45 | _ | ns | WRB | | t_{WRHW8} | Write "H" Pulse Width | 45 | _ | ns | | | $t_{ m RDD8}$ | Read Data Output Delay Time * CL = 15pF | _ | 60 | ns | | | $t_{ m RDH8}$ | Data Hold Timing | 0 | 60 | ns | D[17:9] | | $t_{ m DS8}$ | Data Setup Timing | 30 | - | ns | [1/:9] | | t _{DH8} | Data Hold Timing | 10 | - | ns | | (Read Timing) (Write Timing) Doc. No: SAS1-I003-B ## 3.3.3 Serial Interface Timing Characteristics: $(V_{DD} = 2.8V, T_a = 25^{\circ}C)$ | Symbol | Item | Min | Max | Unit | Port | |------------------|---------------------|-----|-----|------|------| | t_{CYCS} | Serial Clock Cycle | 60 | - | ns | | | $t_{ m SHW}$ | SCL "L" Pulse Width | 25 | - | ns | SCL | | $t_{\rm SLW}$ | SCL "H" Pulse Width | 25 | - | ns | | | t _{DSS} | Data Setup Timing | 25 | - | ns | SDI | | $t_{ m DHS}$ | Data Hold Timing | 25 | - | ns | SDI | | t_{CSS} | CSB-SCL Timing | 25 | _ | ns | CSB | | t_{CSH} | CSB-Hold Timing | 25 | - | ns | CSB | | t _{RSS} | RS-SCL Timing | 25 | - | ns | RS | | t _{RSH} | RS-Hold Timing | 25 | _ | ns | CA | ^{*} All the timing reference is 10% and 90% of $V_{\rm DD}$. Doc. No: SAS1-I003-B ## 3.3.4 RGB Interface Timing Characteristics: $(V_{DD} = 2.8V, T_a = 25^{\circ}C)$ | Symbol | Item | Min | Max | Unit | Port | |-------------------|---------------------|-----|-----|--------|----------| | t_{DCYC} | Dot Clock Cycle | 100 | - | ns | | | $t_{ m DLW}$ | Dot "L" Pulse Width | 50 | - | ns | DOTCLK | | $t_{ m DHW}$ | Dot "H" Pulse Width | 50 | - | ns | | | $t_{ m DS}$ | Data Setup Timing | 5 | - | ns | D[17,12] | | t_{DH} | Data Hold Timing | 5 | - | ns | D[17:12] | | $t_{ m VLW}$ | Vsync Pulse Width | 1 | _ | DOTCLK | VSYNC | | $t_{ m HLW}$ | Hsync Pulse Width | 1 | 1 | DOTCLK | HSYNC | ^{*} All the timing reference is 10% and 90% of V_{DD}. DTST: Setup Time for Data Transmission ^{*} VSYNC, HSYNC, ENABLE, and D[17:12] should be transmitted by 3 clocks for one pixel (RGB). #### Doc. No: SAS1-I003-B ### 4. Functional Specification #### 4.1. Commands Refer to the Technical Manual for the SEPS525 #### 4.2 Power down and Power up Sequence To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation. #### 4.2.1 Power up Sequence: - 2. Send Display off command - 3. Initialization - 4. Clear Screen - 5. Power up V_{DDH} - 6. Delay 100ms (when V_{DDH} is stable) - 2. Power down V_{DDH} - 3. Delay 100ms (when V_{DDH} is reach 0 and panel is completely discharges) - 4. Power down V_{DD} / V_{DDIO} V_{DD} / V_{DDIO} on V_{DDH} on Display on #### 4.3 Reset Circuit When RESETB input is low, the chip is initialized with the following status: - 1. Frame Frequency: 90Hz - 2. Oscillation: Internal Oscillator On - 3. DDRAM Write Horizontal Address: MX1 = 0x00, MX2 = 0x9F - 4. DDRAM Write Vertical Address: MY1 = 0x00, MY2 = 0x7F - 5. Display Data RAM Write: HC = 1, VC = 1, HV = 0 - 6. RGB Data Swap: Off - 7. Row Scan Shift Direction: G0, G1, ..., G126, G127 - 8. Column Data Shift Direction: S0, S1, ..., S478, S479 - 9. Display On/Off: Off - 10. Panel Display Size: FX1 = 0x00, FX2 = 0x9F, FY1 = 0x00, FY1 = 0x7F - 11. Display Data RAM Read Column/Row Address: FAC = 0x00, FAR = 0x00 - 12. Precharge Time (R/G/B): 0 Clock - 13. Precharge Current (R/G/B): 0μA - 14. Driving Current (R/G/B): 0µA Doc. No: SAS1-I003-B #### 4.4 Actual Application Example Command usage and explanation of an actual example #### <Initialization> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. Doc. No: SAS1-I003-B ## 5. Reliability #### 5.1 Contents of Reliability Tests | Item | Conditions | Criteria | |-------------------------------------|--|---------------------------------| | High Temperature Operation | 70°C, 240 hrs | | | Low Temperature Operation | -30°C, 240 hrs | | | High Temperature Storage | 80°C, 240 hrs | The operational functions work. | | Low Temperature Storage | -40°C, 240 hrs | | | High Temperature/Humidity Operation | 60°C, 90% RH, 120 hrs | | | Thermal Shock | -40 °C \Leftrightarrow 85°C, 24 cycles 60 mins dwell | | ^{*} The samples used for the above tests do not include polarizer. #### 5.2 Lifetime Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. #### 5.3 Failure Check Standard After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH. ^{*} No moisture condensation is observed during tests. ## 6. Outgoing Quality Control Specifications #### 6.1 Environment Required Customer's test & measurement are required to be conducted under the following conditions: Temperature: $23 \pm 5^{\circ}\text{C}$ Humidity: $55 \pm 15 \text{ %RH}$ Fluorescent Lamp: 30W Distance between the Panel & Lamp: $\geq 50 \text{ cm}$ Distance between the Panel & Eyes of the Inspector: $\geq 30 \text{ cm}$ Finger glove (or finger cover) must be worn by the inspector. Inspection table or jig must be anti-electrostatic. #### 6.2 Sampling Plan Level II, Normal Inspection, Single Sampling, MIL-STD-105E #### 6.3.1 Cosmetic Check (Display Off) in Non-Active Area | Check Item | Classification | Criteria | |---------------------------|----------------|---| | Panel
General Chipping | Minor | X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge) | 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued) | Check Item | Classification | Criteria | |--------------------------------------|----------------|--| | Panel Crack | Minor | Any crack is not allowable. | | Cupper Exposed
(Even Pin or Film) | Minor | Not Allowable by Naked Eye
Inspection | | Film or Trace Damage | Minor | Not Allowable | | Terminal Lead Twist | Minor | D. TVISTED LEAD | | Terminal Lead Broken | Minor | Not Allowable A. BROKEN LEAD | | Terminal Lead Prober
Mark | Acceptable | | 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued) | Check Item | Classification | Criteria | |--|----------------|---| | Terminal Lead Bent | Minor | NG if any bent lead cause lead shorting. | | (Not Twist or Broken) | Minor | NG for horizontally bent lead more than 50% of its width. | | Glue or Contamination
on Pin
(Couldn't Be Removed
by Alcohol) | Minor | | | Ink Marking on Back
Side of panel
(Exclude on Film) | Acceptable | Ignore for Any | Doc. No: SAS1-I003-B ## 6.3.2 Cosmetic Check (Display Off) in Active Area It is recommended to execute in clear room environment (class 10k) if actual in necessary. | Check Item | Classification | Criteria | | |--|----------------|---|--| | Any Dirt & Scratch on Polarizer's Protective Film | Acceptable | Ignore for not Affect the Polarizer | | | Scratches, Fiber, Line-Shape
Defect
(On Polarizer) | Minor | $W > 0.1, L \le 2$ | Ignore $n \le 1$
n = 0 | | Dirt, Black Spot, Foreign
Material,
(On Polarizer) | Minor | $0.1 < \Phi \le 0.25$ | $ \begin{cases} \text{gnore} \\ 1 \le 1 \\ 1 = 0 \end{cases} $ | | | | Φ ≤ 0.5→ Ignore if no Influe Display | | | Dent, Bubbles, White spot
(Any Transparent Spot on | Minor | 0.5 < Ф | n = 0 | | Polarizer | | | | | Fingerprint, Flow Mark (On Polarizer) | Minor | Not Allowable | | - * Protective film should not be tear off when cosmetic check. - ** Definition of W & L & Φ (Unit: mm): $$\Phi = (a+b)/2$$ 6.3.3 Pattern Check (Display On) in Active Area | | Check Item | Classification | Criteria | |--|--|----------------|---------------| | | No Display | Major | Not allowable | | | Bright Line | Major | | | | Missed Line Pixel Short | Major
Major | | | | Darker Pixel | Major | \odot | | | Wrong Display | Major | | | | Un-Uniform (Luminance
Variation within a Display) | Major | | #### Doc. No: SAS1-I003-B ## 7. Package Specifications | Item | | | Quantity | |---------------|-----|-----|--| | Holding Trays | (A) | 15 | per Primary Box | | Total Trays | (B) | 16 | per Primary Box (Including 1 Empty Tray) | | Primary Box | (C) | 1~4 | per Carton (4 as Major / Maximum) | Doc. No: SAS1-I003-B ## Precautions When Using These OEL Display Modules #### **8.1 Handling Precautions** - Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position. - If the display panel is broken by some accident and the internal organic 2) substance leaks out, be careful not to inhale nor lick the organic substance. - If pressure is applied to the display surface or its neighborhood of the OEL 3) display module, the cell structure may be damaged and be careful not to apply pressure to these sections. - The polarizer covering the surface of the OEL display module is soft and easily 4) scratched. Please be careful when handling the OEL display module. - When the surface of the polarizer of the OEL display module has soil, clean the surface. It takes advantage of by using following adhesion tape. - * Scotch Mending Tape No. 810 or an equivalent Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer: Aromatic Solvents Hold the OEL display module very carefully when placing the OEL display module onto/into any device. Do not apply excessive stress or pressure to the OEL module. And, do not over bend the film with electrode layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases. - Do not apply stress to the LSI chips and the surrounding molded sections. - 8) Do not disassemble nor modify the OEL display module. - Do not apply input signals while the logic power is off. - 10) Pay sufficient attention to the working environments when handing OEL display modules to prevent occurrence of element breakage accidents by static electricity. - * Be sure to make human body grounding when handling OEL display modules. - * Be sure to ground tools to use or assembly such as soldering irons. - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments. - * Protective film is being applied to the surface of the display panel of the OEL display module. Be careful since static electricity may be generated when exfoliating the protective film. - 11) Protection film is being applied to the surface of the display panel and removes Doc. No: SAS1-I003-B the protection film before assembling it. At this time, if the OEL display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5). 12) If electric current is applied when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above. #### 8.2 Storage Precautions 1) When storing OEL display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps, etc. and, also, avoiding high temperature and high humidity environments or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Univision Technology Inc.) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them. If electric current is applied when water drops are adhering to the surface of the OEL display module, when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above. #### **8.3 Designing Precautions** - 1) The absolute maximum ratings are the ratings which cannot be exceeded for OEL display module, and if these values are exceeded, panel damage may be happen. - 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible. - 3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A) - 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices. - 5) As for EMI, take necessary measures on the equipment side basically. - 6) When fastening the OEL display module, fasten the external plastic housing section. - 7) If power supply to the OEL display module is forcibly shut down by such errors as taking out the main battery while the OEL display panel is in operation, we cannot guarantee the quality of this OEL display module. - 8) The electric potential to be connected to the rear face of the IC chip should be as follows: SEPS525 - * Connection (contact) to any other potential than the above may lead to rupture of the IC. Doc. No: SAS1-I003-B #### 8.4 Precautions when disposing of the OEL display modules 1) Request the qualified companies to handle industrial wastes when disposing of the OEL display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations. #### **8.5** Other Precautions - When an OEL display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur. Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module. - 2) To protect OEL display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OEL display modules. - * Pins and electrodes - * Pattern layouts such as the COF - 3) With this OEL display module, the OEL driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OEL driver is exposed to light, malfunctioning may occur. - * Design the product and installation method so that the OEL driver may be shielded from light in actual usage. - * Design the product and installation method so that the OEL driver may be shielded from light during the inspection processes. - 4) Although this OEL display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design. - 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.